SEMESTER I PCPHA20 – MATHEMATICAL PHYSICS – I

Year: I	Course	Title of the	Course	Course	H/W	Credits	Marks
	Code:	Course:	Type:	Category:			
Sem: I	PCPHA20	Mathematical	Theory	Core	6	5	100
		Physics – I					

Course Objectives

- 1. To inculcate to the students the mathematical concepts for solving physical problems which arise in many branches of Physics
- 2. To prepare the students for solving the problems of mathematical physics in competitive examinations

Course Outcomes (CO)

- 1. Understand and apply the basic concepts of vectors and vector space.
- 2. Perceive various types of matrices, solve Eigen value problems and carry out matrix operations.
- 3. Solve ordinary differential equations that are common in the physical-sciences.
- 4. Understand the characteristics of special functions to solve the physical problems.
- Understand and use Dirac-delta function for describing physical systems and apply Green's function to solve partial differential equations.

СО		PO								
	1	2	3	4	5	6				
CO1	Н	Н	Н	Η	М	Н				
CO2	Н	Н	Н	Н	М	Н				
CO3	Н	Н	Н	Н	М	Н				
CO4	Н	М	Н	Н	Н	Н				
CO5	М	М	М	М	М	Н				

СО		PSO								
	1	2	3	4	5	6				
CO1	Н	М	Н	Н	М	Н				
CO2	Н	М	Н	Μ	Н	Н				
CO3	Н	Н	М	Н	М	М				
CO4	Н	Н	Н	Н	Н	Н				
CO5	Н	М	Н	М	М	М				

(Low - L, Medium – M, High - H)

Unit I: Vector Analysis

- 1.1 Vector Field Orthogonal curvilinear co-ordinates Expression for gradient, divergence, curl and Laplacian (K1,K2,K3)
- 1.2 Spherical and cylindrical coordinate systems expression for gradient, divergence, curl and Laplacian(K2,K4, K5)
- 1.3 Stoke's theorem Simple applications (K2,K3,K4,K5)
- 1.4 Gauss theorem Simple applications (K2,K3,K4,K5)
- 1.5 Linear vector Space Linear independence of vectors Basis and Expansion theorem Inner product and Unitary vector spaces (K2,K3,K4,K5)
- 1.6 Orthonormal sets Schwarz inequality Schmidt's orthogonalization method Completeness (K2,K3, K4)

Unit II: Matrix Theory

- 2.1 Introduction Matrices Transpose of a matrix Conjugate Conjugate transpose Symmetric and Skew-symmetric matrices -Hermitian and Skew-Hermitian matrices Unitary matrices (K1,K2)
- 2.2 Determinant- Co-factors Minors of a matrix Singular and non-singular matrices Adjoint of a matrix Inverse of a matrix- Orthogonal matrices Unitary matrices (K2,K3,K4)
- 2.3 Characteristic equation of a matrix Evaluation of Eigen values and Eigen vectors (K4, K5)
- 2.4 Cayley-Hamilton's theorem Inverse of a matrix using Cayley Hamilton theorem (K3, K4, K5)
- 2.5 Important theorems on Eigen values and Eigen vectors (K2, K3, K5)
- 2.6 Stochastic matrices Theorem on Stochastic matrix -Diagonalization of matrices(K2, K3, K4)

Unit III: Differential Equations

- 3.1 Differential equations Order and degree of a differential equation Solution of first order differential equation by the method of separation of variables (K2, K3, K4, K5)
- 3.2 Solution of Linear differential equation of first order by the method of Integrating factor -Problems (K2, K3, K4, K5)
- 3.3 Solution of first order differential equation reducible to linear form (Bernoulli's equation) Problems (K2, K3, K4, K5)
- 3.4 Solution of Second order differential equations with constant coefficients Problems (K2, K3, K4, K5)
- 3.5 Power series solution: Frobenius' method
- 3.6 Linear independence of solutions: Wronskian method Problems

Unit IV: Special Functions

- 4.1 Series solution and Generating function of Bessel function(K2, K3, K5)
- 4.2 Orthonormal properties of Bessel Evaluation of recurrence relations(K2, K3, K4, K5)
- 4.3 Series solution and Generating function of Legendre polynomial(K2, K3, K5)

(14 hours)

(16 hours)

(16 hours)

(14 hours)

- 4.4 Rodrigues formula and Orthogonal properties of Legendre Polynomial Evaluation of recurrence relations(K2, K3, K4, K5)
- 4.5 Series solution and Generating function of Hermite polynomial(K2, K3, K5)
- 4.6 Rodrigues formula and Orthogonal properties of Hermite Polynomial Evaluation of recurrence relations(K2, K3, K4, K5)

Unit V: Green's Function

(12 hours)

- 5.1 Dirac-delta function Properties of Delta function Problems Fourier transform of Delta function (K1, K2, K4)
- 5.2 Green's function Green's function for one-dimensional case (K1, K2, K4)
- 5.3 Evaluation of Green's function for boundary value problems (K1, K2, K4)
- 5.4 Eigen function Expansion of Green's function Problem(K1, K2, K4)
- 5.5 Green's function for Poisson's equation and solution of Poisson's equation Green's function for three dimensional Helmholtz equation(K1, K2, K4)
- 5.6 Green's function for Quantum mechanical scattering problem (K1, K2, K4)

Books for Study:

- 1. Sathyaprakash Mathematical Physics S.Chand& Sons, Reprint 2006.
- 2. B.D.Gupta- Mathematical Physics, 3rd Edition Vikas Publishing House Pvt. Ltd., 2004.
- 3. E. Kreyszig Advanced Engineering Mathematics, 8th Edition Wiley, New York, 1999.
- 4. H.K. Dass Mathematical Physics S.Chand, Reprint 2007.

Books for Reference:

- P.R. Halmos Finite dimensional Vector Spaces, 2nd Edition Affiliated East West, New Delhi, 1965.
- 2. C.R. Wylie and LC. Barrett Advanced Engineering Mathematics, 6th International Edition McGraw Hill, New York, 1995.
- 3. P.K. Chakrabarti and S.N. Kundu A Textbook of Mathematical Physics New Central Book Agency, Kolkata, 1996.
- 4. A.K. Ghatak, I.C. Goyal and S.H. Chua Mathematical Physics Macmillan India, New Delhi, 2002.
- 5. M.D. Greenberg Advanced Engineering Mathematics, 2nd Edition International Ed., Prentice Hall International, New Jersey, 1998.
- 6. P.K. Chattopadhyay Mathematical Physics Wiley Esatern, Madras, 1990.
- 7. S. Lipschutz Linear Algebra Schaum's Series, McGraw Hill, New York, 1987.
- 8. G. Arfken and H.J. Weber Mathematical Methods for Physics, 5th Edition Harcourt (India), New Delhi, 2001.

SEMESTER I PCPHB20 - CLASSICAL MECHANICS

Year: I	Course	Title of the	Course	Course	H/W	Credits	Marks
	Code:	Course:	Type:	Category:			
Sem: I	PCPHB20	Classical	Theory	Core	6	5	100
		Mechanics					

Course Objectives

1. To make the students understand the different transformations that governs the classical mechanics.

Course Outcomes (CO)

- 1. Acquire knowledge about the fundamental concepts of dynamics of system of particles
- 2. Use D'Alembert's principle and calculus of variations to derive the Lagrange Hamilton formalism applicable to solve the equation of motion for any mechanical system
- 3. Understand the essential features of canonical transformations and their applications to various systems.
- 4. Describe the Hamilton-Jacobi equation and develop the skills to use them to set and solve the appropriate physical problems.
- 5. Gain knowledge about the fundamental principles of small theory of oscillations and its applications.

СО	PSO								
	1	2	3	4	5	6			
CO1	Н	Н	М	Μ	Н	М			
CO2	Н	Н	Н	Н	М	L			
CO3	М	Н	Н	Н	Н	М			
CO4	Н	Н	Н	Н	М	М			
CO5	Н	М	Н	Н	Н	М			

СО	РО								
	1	2	3	4	5	6			
CO1	Н	Н	Н	Н	Н	Н			
CO2	Н	М	Н	Н	М	М			
CO3	М	Н	Н	Н	Н	Н			
CO4	Н	М	Н	Н	Н	Н			
CO5	Н	Н	Н	М	М	М			

(Low - L, Medium – M, High - H)

Unit I: Rigid Body Dynamics

- 1.1 Introduction Generalized coordinates of a rigid body Body and space reference systems (K1, K2, K3)
- 1.2 Euler's angles Infinitesimal rotations as vectors (K1, K2, K3)
- 1.3 Components of angular velocity Angular momentum and Inertia tensor (K1, K2, K3)
- 1.4 Principle axes Principle moments of inertia Rotational Kinetic energy of a rigid body -Moment of inertia for different body systems (K1, K2)
- 1.5 Euler's equations of motion of rigid body Torque free motion of a rigid body (K1,K2, K4)
- 1.6 Motion of a symmetrical top under the action of gravity(K4, K5, K6)

Unit II: Lagrangian and Hamiltonian Formulations

- 2.1 Newton's equation and conservation laws for system of particles Constraints (K1, K2)
- 2.2 Generalized co-ordinates Principle of Virtual work (K1, K2)
- 2.3 D'Alembert's Principle Lagrange's equation from D'Alembert's Principle Procedure for formation of Lagrange's equation (K1, K2)
- 2.4 Kinetic energy in generalized coordinates Lagrange's equation from Hamilton's Principle -Hamilton's equations (K1, K2, K3)
- 2.5 Δ variations Principle of least action (K1, K2)
- 2.6 Applications (Atwood's Machine, Compound pendulum and LC circuit) (K3, K4, K5, K6)

Unit III: Canonical Transformations

- 3.1 Introduction (K1, K2) Canonical Transformations and their generators (K2)
- 3.2 Lagrange and Poisson Brackets notation (K2, K3)
- 3.3 Procedure for Applications of Canonical transformations Condition for canonical transformations (K2, K3, K4)
- 3.4 Problems on canonical transformation (Simple Harmonic Oscillator) (K3, K4, K5, K6)
- 3.5 Proof of invariance of Poisson's Bracket under canonical transformations (K3, K4)
- 3.6 Infinitesimal contact transformation (K1, K3)

Unit IV: Hamilton–Jacobi Theory

- 4.1 Hamilton–Jacobi equations (K1, K2)
- 4.2 Hamilton's Characteristic function Physical Significance (K1, K2)
- 4.3 Linear Harmonic Oscillator problem by Hamilton Jacobi method (K3, K4, K5)
- 4.4 Action Angle variables Problem of harmonic oscillator using action angle variables (deduction of frequency of motion) (K3, K4, K5)
- 4.5 Hamilton Jacobi method and Motion of a particle in a plane under a central force (K2, K3)
- 4.6 Application to Kepler's problem based on Hamilton Jacobi method (K3, K4, K5)

Unit V: Small oscillations

- 5.1 Introduction General theory of small oscillations (K1, K2)
- 5.2 Secular equations and Eigen value equations solution to Eigen value equations (K1, K2)

(16 Hours)

(13 Hours)

(14 Hours)

(15 Hours)

(14 Hours)

- 5.3 one dimensional oscillator The Lagrangian of one dimensional oscillator and its solution (K3, K4, K5)
- 5.4 Two coupled oscillators Lagrangian equation of two coupled oscillators and its solution (K3, K4, K5)
- 5.5 Example of two coupled oscillator: Two coupled pendulum (K3, K4, K5, K6)
- 5.6 Vibrations of linear triatomic molecule (K3, K4, K5)

Books for Study:

- 1. J.C. Upadhyaya Classical Mechanics Himalaya Publishing House, Reprint 2003.
- 2. Gupta Kumar and Sharma Classical Mechanics, 2nd Edition PragatiPrakasan, Meerut, 2006.
- 3. B.D. Gupta and Sathya Prakash Classical Mechanics Kedar Nath, Ram Nath, 2003.

Books for Reference:

- 1. H. Goldstein Classical Mechanics, 3rd Edition C. Poole and J. Safko, Pearson Education, Asia, New Delhi, 2002.
- 2. S.N. Biswas Classical Mechanics Books and Allied Ltd., Kolkata, 1998.
- 3. K. Huang Statistical Mechanics Wiley Eastern Ltd., New Delhi, 1975.
- 4. B.K. Agarwal and M. Eisner Statistical Mechanics, 2nd Edition New Age International, New Delhi, 1998.
- 5. J.K.Bhattacharjee Statistical Mechanics: An Introductory Text Allied Publication, New Delhi, 1996.
- 6. L.D. Landau and E.M. Lifshitz Mechanics Pergomon Press, Oxford, 1969.
- 7. C.R.Mondal Classical Mechanics Prentice Hall of India, New Delhi, 2009.
- 8. L.P. Kadanoff Statistical Physics: Statics, Dynamics and Renormalization World Scientific, Singapore, 2001.
- 9. M. Glazer and J. Wark Statistical Mechanics Oxford University Press, 2001.

SEMESTER I PCPHC20- STATISTICAL MECHANICS

Year: I	Course	Title of the	Course	Course	H/W	Credits	Marks
	Code:	Course:	Type:	Category:			
Sem: I	PCPHC20	Statistical	Theory	Core	6	4	100
		Mechanics					

Course Objectives

1. To understand thefundamental principles of thermodynamics and statistical mechanics to perform a quantitative calculations on ideal systems.

Course Outcomes (CO)

- 1. Define and discuss the concepts in thermodynamics and statistical mechanics.
- 2. Differentiate classical and quantum statistics, explain the statistical behaviour of ideal system (Maxwell, Bose & Fermi) and calculate the statistical quantities.
- 3. Apply the Bose-Einstein and Fermi-Dirac distributions appropriately to understand the macroscopic properties. (Black body radiation, electrons in metals, paramagnetism etc.)
- 4. Formulate theories and microscopic models to explain the properties of complex system. (Ising model, Bose-Einstein condensation, liquid helium II)
- 5. Describe the role of fluctuations and transport phenomena in a system.

СО	PSO									
	1	1 2 3 4 5 6								
CO1	Н	L	М	L	L	М				
CO2	Н	М	Н	Н	Н	Н				
CO3	Н	М	Н	М	Н	L				
CO4	М	L	М	М	Н	Н				
CO5	Н	М	М	М	М	L				

СО	РО								
	1	1 2 3 4 5 6							
CO1	Н	Н	М	Н	М	М			
CO2	Н	Н	Н	Н	Н	М			
CO3	Н	М	Н	Н	М	Н			
CO4	Н	М	Н	М	Н	М			
CO5	М	Н	М	Μ	L	L			

(Low - L, Medium – M, High - H)

Unit I: Thermodynamics

- 1.1 Introduction Thermodynamic potentials (K1, K2)
- 1.2 Phase equilibrium (K1,K2,K3)
- 1.3 Gibb's phase rule Entropy of mixing and Gibb's paradox (K1, K2, K3)
- 1.4 Phase transition and Ehrenfest's Classification (K2)
- 1.5 Landau theory of Phase transition (K2,K3)
- 1.6 Critical indices- Scale transformation and dimensional analysis (K2, K3)

Unit II: Ensembles

2.1 Introduction - Phase space (K2)

- 2.2 Micro canonical, Canonical and grand canonical ensembles (K2, K3, K4)
- 2.3 Trajectories and density of states (K2, K3)
- 2.4 Liouville's theorem (K2, K3, K4)
- 2.5 Partition function Calculation of statistical quantities (K3, K4, K5)
- 2.6 Energy and density fluctuations (K3, K4, K5)

Unit III: Maxwell-Boltzmann statistics and Bose-Einstein statistics (15 Hours)

- 3.1 Postulates of classical and quantum statistics (K2, K3)
- 3.2 Density of matrix Statistics of indistinguishable particles(K2, K3, K4)
- 3.3 Maxwell- Boltzmann distribution function Broadening of spectral lines (K3, K4)
- 3.4 Bose-Einstein statistics Bose-Einstein distribution of gas (K2, K3, K4)
- 3.5 Equation of states black body radiation (K3, K4)
- 3.6 Bose Einstein condensation -Landu's theory of Liquid Helium II(K3, K4)

Unit IV: Fermi-Dirac statistics

- 4.1 Fermi-Dirac distribution Equation of states (K2, K3, K4)
- 4.2 Free electron gas in metals (K2, K3, K4)
- 4.3 Heat capacity (K2, K3, K4)
- 4.4 Pauli's paramagnetism(K2, K3, K4)
- 4.5 Thermionic emission (K2, K3, K4)
- 4.6 Superconductivity (K2, K3, K4)

Unit V: Ising model and Fluctuations

- 5.1 Ising model Mean field theories of the Ising model in three, two and one dimension (K2, K3, K4)
- 5.2 Exact solutions in one dimension(K2, K3, K4, K5)
- 5.3 Correlation of space-time dependent fluctuations (K2, K4)
- 5.4 Fluctuations and transport phenomena (K2, K3)
- 5.5 Brownian motion Langevin theory (K2, K3, K4)
- 5.6 Fluctuation-dissipation theorem The Fokker- Planck equation (K3, K4)

(15 Hours)

(14 Hours)

(14 Hours)

(14 Hours)

Books for study:

- 1. Gupta, Kumar and Sharma Statistical Mechanics PragatiPrakasan, 21st Ed., 2006
- 2. SathyaPrakash and J.P Agarwal Statistical mechanics KedarNath Ram Nath, 2005.
- 3. SathyaPrakash and J.P. Agarwal Thermodynamics, statistical physics and kinetics
- 4. B.B.Laud- Fundamentals of Statistical mechanics New Age International Pvt Ltd., 2012.

Books for reference:

- 1. Statistical mechanics and properties of matter E.S.R. Gopal
- 2. Statistical physics L.D. Landau and E. M. Lifshitz
- 3. K. Srivastava and J. Ashok Statistical mechanics Prentice-Hall of India Pvt. Ltd., 2005.
- 4. Brijlal, Dr. N. Subrahmanyam, P.S. Hemne Heat Thermodynamics and Statistical Physics S.Chand.
- 5. Dr. D. Jayaraman, Dr. K. Ilangovan Thermal Physics and Statistical Mechanics Viswanathan(Publishers).

SEMESTER I PEPHA20 - ELECTIVE IA: ELECTRONIC DEVICES AND APPLICATIONS

Year: I	Course	Title of the	Course	Course	H/W	Credits	Marks
	Code:	Course:	Type:	Category:			
Sem: I	PEPHA20	Electronic	Theory	Major	5	4	100
		Devices and		Elective			
		applications					

Course Objectives

- 1. To teach the students the methods of the fabrication of digital circuits and the devices used in the design of digital systems.
- 2. To understand the principles of operational amplifier and its applications and digital communication.

Course Outcomes (CO) The learners will be able to

- 1. Analyze about the fabrication of various Integrated circuits and semiconductor devices (construction, working, principles and V-I characteristics) and their applications.
- 2. Ability to understand about the basic principles and operations of opto electronic devices and their features and applications.
- 3. To study the Timer IC and its applications.
- 4. To know the principles, configuration, linear and non-linear applications of Op-amp used to design various digital circuits.
- 5. To understand the concepts of combinational circuits and sequential circuits and A/D –D/A converters used to design advanced digital system.

СО	PSO								
	1 2 3 4 5 6								
CO1	Н	Н	М	Н	Н	Н			
CO2	Н	Н	L	Н	М	М			
CO3	М	Н	М	Н	М	М			
CO4	М	Н	Н	Η	М	Н			
CO5	Н	М	М	Н	Н	Н			

СО		PO								
	1	2	3	4	5	6				
CO1	Н	Н	Н	Н	М	Н				
CO2	Н	Н	Н	Н	М	Н				
CO3	Н	Н	Н	Н	М	Н				
CO4	Н	М	Н	Н	Н	Н				
CO5	М	М	М	М	М	Н				

(Low -L, Medium-M, High-H)

Unit I: FinFET and SET

- 1.1 Multi gate transistors Need of FinFET- Structure of FinFET Fabrication Mechanism of FinFET Technology-Bulk FinFET- SOI FinFET(K1, K2, K3)
- 1.2 FinFET Classifications: Gate shorted (SG), Insulated Gate (IG) and Low Power (LP) n-FinFET and p-FinFET - Working of FinFET- I-V characteristics of FinFET(K2, K3, K4)
- 1.3 Applications of FinFET Design of Switches, logic gates, flip-flops and Schmidt trigger using FinFET(K3, K4, K5)
- 1.4 Single Electron Transistor: Principle Quantum dots Coulomb blockade and electron tunneling –Construction and operation of SET (K3, K4)
- 1.5 Single island RC equivalent circuit of SET- Operation Temperature Different ways to increase Coulomb energy E_c- I-V characteristics of symmetric and asymmetric junction (Coulomb Stair-Case) SET (K3, K4, K5)
- 1.6 Design of logic gates using SET Realization of AND, OR and NOT gates using SET Advantages and disadvantages of SET- Difference between SET and FET Applications of SET (K4, K5, K6)

Unit II: Opto Electronic Devices

- 2.1 Light units Light emitting diodes Operation and construction Characteristics and parameters (K1, K2)
- 2.2 Seven-segment displays LED seven-segment display liquid crystal cells LCD sevensegment displays(K1, K2, K3)
- 2.3 Photoconductive cells Construction Characteristics and Parameters Applications(K2, K3, K4)
- 2.4 Photodiodes and Solar cells Photodiode operation characteristics specification construction- Applications Solar cells (K2, K4, K5, K6)
- 2.5 Phototransistors (BJT) Characteristics and specifications Applications Photo-Darlingtons-Photo-FET-Optocouplers- Operation and constructions - specification - Applications (K2, K3, K4)
- 2.6 Laser diode Operation Characteristics and parameters- Drive circuits Modulation (K3, K4, K5, K6)

Unit III: 555 Timer and Applications

- 3.1 555 Timer Description (K1, K2)
- 3.2 Monostable operation Frequency divider(K1, K2, K3)
- 3.3 Astable operation Schimitt trigger (K2, K3)
- 3.4 Phase Locked Loops Basic principles (K2, K3, K4, K6)
- 3.5 Analog phase detector(K2, K3)
- 3.6 Voltage Controlled Oscillator Voltage to Frequency conversion (K2, K3)

(12 Hours)

(13 Hours)

(16 Hours)

Unit IV: Op-Amp Applications

- 4.1 Instrumentation amplifier V to I and I to V converter Op-amp circuits using diodes Sample and Hold circuits (K1, K2)
- 4.2 Log and Antilog amplifiers –Multiplier and Divider Electronic analog Computation (K2, K3, K4)
- 4.3 Phase shift and Wein bridge sine wave oscillators (K1, K2, K3)
- 4.4 Solution to simultaneous equations and differential equations Schimitt Trigger Astable, Monostable Multivibrator (K2, K3, K4, K6)
- 4.5 Square, Triangular and Saw tooth wave generators (K2, K3, K4, K6)
- 4.6 RC Active filters Low pass, High pass and Band pass filter (K2, K3, K4)

Unit V: Digital Electronic Devices

- 5.1 4bit Binary adder/subtractor IC 7483 (K1, K2, K3, K4)
- 5.2 Multiplexer IC 74150 and Demultiplexer IC 74154 (K1, K2)
- 5.3 Counters: Binary Counter BCD Counter Parallel Counters (K1, K2)
- 5.4 D/A Converters: Binary Weighted Resistor method R-2R Ladder method (K1, K2, K3)
- 5.5 A/D Converters: Counter type, Successive Approximation (K2, K3, K4)
- 5.6 Dual Slope method Parallel comparator A/D converter (K2, K3, K4)

Books for Study:

- 1. D. Roy Choudhury Linear Integrated Circuits Wiley Eastern, New Delhi, 1991.
- 2. V.Vijayendran Introduction to Integrated Electronics, S.Viswanathan (Printers &
- 3. Publishers), Pvt. Ltd., 2007.
- 4. Amar K.Ganguly Optoelectronic Devices and Circuits Narosa Publishing House, 2007.
- 5. R.A. Gaekwad Op-Amps and Integrated Circuits EEE, 1994.
- 6. CMOS VLSI Design: A circuit and systems perspective, by Neil H.E. Weste, David Harris and Ayan Banerjee Third edition, Pearson
- 7. Physics of Semiconductor Devices by J.P. Colinge, C.A. Colinge
- 8. FinFETs and Other Multi-Gate Transistors by J.-P. Colinge
- 9. Hybrid CMOS Single-Electron-Transistor Device And Circuit Design by Santanu Mahapatra, Adrian Mihai Ionescu
- 10. Nanoscale Transistors: Device Physics, Modeling and Simulation Mark Lundstrom, Jing Guo

Book for Reference:

- 1. R.F. Coughlin and F.F, Driscol Op-Amp and Linear Integrated Circuits, Prentice Hall of India, New Delhi, 1996.
- 2. M.S.Tyagi Introduction to Semiconductor Devices Wiley, New York, 2014.
- 3. Deboo/ Burrous Integrated circuits and Semiconductor Devices Theory and Application, McGraw Hill, New Delhi, 1985.
- 4. Ramakant Gaekwad Operational Amplifiers Wiley Eastern, New Delhi, 1981.
- 5. S.M. Sze Semiconductor Devices Physics and Technology, Wiley, New York, 1985.
- 6. Millman and Halkias Integrated Electronics McGraw Hill, New Delhi.
- 7. Quantum Transport: Atom to Transistor by SupriyoDattaOrganic field-effect transistors by Bao Z., Locklin J. (eds.)

(18 Hours)

(13 Hours)

SEMESTER I PIPHA20 –IEP: PHYSICS FOR SET / NET - PAPER-I

Year: I	Course	Title of the	Course	Course	H/W	Credits	Marks
	Code:	Course:	Type:	Category:			
Sem: I	PIPHA20	IEP:Physics for	Theory	Independent	-	2	100
		SET/NET-		Elective			
		Paper-I					

Course Objectives

- 1. To represent the equations of motion for complicated mechanical systems using the Lagrangian and Hamiltonian formulation of classical mechanics.
- 2. To analyze logic processes and implement logical operations using combinational and sequential logic circuits.
- 3. To understand the basic concepts of thermodynamic.
- 4. To impart knowledge about Classical Mechanics, Electronics and Statistical mechanics for competitive Examinations.

Course Outcomes (CO)

- 1. Describe and understand the motion of a mechanical system using Lagrange-Hamilton formalism.
- 2. Design and analyze of electronic circuits
- 3. Develop a digital logic and apply it to solve real life problems.
- 4. Ability to identify the properties of substances on property diagrams and obtain the data from property tables.
- 5. To acquire knowledge about classical and Quantum statistical mechanics.

СО	PSO									
	1	2	3	4	5	6				
CO1	Н	L	М	Μ	L	М				
CO2	Н	М	Н	Н	М	L				
CO3	Н	L	М	М	Н	Н				
CO4	Н	L	М	М	Н	М				
CO5	Н	М	L	Н	М	L				

СО	РО									
	1	2	3	4	5	6				
CO1	Н	Н	Н	М	М	Н				
CO2	Н	М	М	Н	Н	Н				
CO3	Н	Н	Н	Н	Н	Н				
CO4	Н	Н	Н	М	Н	М				
CO5	Н	Н	L	Н	М	L				

(Low - L, Medium – M, High - H)

Course Syllabus

Unit I: Classical Mechanics

Dynamical systems - Phase space dynamics - Euler's angles and Euler's equation of motion -Lagrangian and Hamiltonian formalism and equations of motion - Conservation laws and cyclic coordinates - Principle of least action - Poisson's Bracket - Canonical transformations - Hamilton Jacobi theory - Linear harmonic oscillator problem - Action angle variables - Small oscillations -Normal modes - Linear triatomic molecule. Classical statistics - Ensembles, Liouville's theorem -Quantum statistics - Maxwell-Boltzmann - Bose-Einstein - Fermi-Dirac.

Unit II: Electronics - I

Semiconductor devices - Diodes - Rectifiers - Filters - Transistors, FET, UJT - Optoelectronic devices - Solar cells, photo detectors - LEDs structure - Characteristics - Frequency dependence and applications. Op-Amp and their applications -

Unit III: Electronics - II

Amplifiers - Oscillators - Logic circuits & logic families - Flip flops - Registers - Counters and Comparator circuits - A/D and D/A converters - Op-Amp based instrumentation amplifier -Feedback - Filtering and noise reduction - Shielding and grounding - 555 timer - IC 565- Lock-in detector - Modulation techniques. Elementary ideas of Microprocessor and Microcontroller -Transducers - Temperature/ Pressure/Vacuum magnetic fields - Vibration - Optical detectors - Solar cells - Photo detectors - LED's - Digital techniques and applications.

Unit IV:

Thermodynamics:

Equation of state for various thermodynamics systems - laws of thermodynamics - thermodynamic potentials - phase equilibrium - Gibbs phase rule - phase transitions and Dia, para and ferromagnetism - Ehrenfest's classification.

Classical Statistical Mechanics:

Phase space, micro and macro states - Micro-canonical - Canonical and Grand canonical ensembles and partition function - Statistical ensemble - Statistical postulates - Probability calculations -Partition function and their properties - Calculation of statistical quantities - Langevin's theory of paramagnetism.

Unit V: Quantum Statistical Mechanics:

Postulates of Quantum statistical mechanics - Density operator and matrix - Properties of ideal Bose & Fermi gases - Bose-Einstein condensation - Cluster expansion for a classical gas - Virial equation of state - Ising model - One dimensional Ising model - Correlation of space - Time dependent fluctuations - Brownian motion - Black body radiation and Plank's radiation law. **Books for study:**

- 1. J.C. Upadhyaya Classical Mechanics, Himalaya Publishing house, Reprint 2017.
- 2. J.D. Jackson Classical Electrodynamics, Willey Eastern Ltd., New Delhi, 1975.
- 3. R.A. Gaekwad Op-Amps and Integrated circuits EEE, 2012.
- 4. D. Roy Choudary and Shail B. Jain Integrated Circuits New Age International Publishers 2011.
- 5. V. K. Mehta and Rohit Mehta- Principles of Electronics S. Chand & Co., New Delhi, Reprint 2014.
- 6. SathyaPrakash Statistical Mechanics (1994) Kedar, Meerut, 1994.
- 7. F. Reif Fundamentals of Statistical and Thermal Physics McGraw Hill, Auckland 1965.
- 8. S.K. Sinha Introduction to Statistical Mechanics Alpha Science International, 2005

Books for reference:

- 1. H. Goldstein Classical mechanics, 3rd Ed., C. Poole and J. Safko, Pearson Education, Asia, New Delhi, 2015.
- 2. S.M. Sze Semiconductor Devices: Physics and Technology Wiley, New York, 1985.
- 3. Sathyaprakash Statistical Mechanics, Kedar Publications, Meerut, 2017.
- 4. R.K. Pathria, Paul D.Beale, -Statistical Mechanics Butterworth Heinemann, UK, 1996.

SEMESTER I PIPHB20 –IEP: ASTRO PHYSICS

Year: I	Course	Title of the	Course	Course	H/W	Credits	Marks
	Code:	Course:	Type:	Category:			
Sem: I	PIPHB20	IEP: Astro	Theory	Independent	-	2	100
		Physics		Elective			

Course Objectives

- 1. To make the students acquire the knowledge about the universe
- 2. To provide a clear understanding of Astro Physics.
- 3. To explain the relationship between mass and gravity in solar system.
- 4. To formulate astrophysical problems in mathematical terms; solve with analytic and numerical methods
- 5. To propose, plan, and conduct astronomical observations with professional telescopes

Course Outcomes (CO)

The learners will be able to

- 1. In-depth knowledge within the defined area of astrophysics.
- 2. Explain stellar evolution, including supernovas, neutron stars, pulsars, white dwarfs and black holes, using evidence and presently accepted theories.
- 3. Detail the presently accepted formation theories of the solar system based upon observational and physical constraints.
- 4. Detail the main features and formation theories of the various types of observed galaxies, in particular the Milky Way.
- 5. Develop observation skills to be able to explain astronomical features and observations obtained via telescopic observations.

СО			PS	50		
	1	2	3	4	5	6
CO1	Н	L	Н	Μ	L	Н
CO2	Н	М	Н	Н	Н	Н
CO3	Н	L	Н	М	Н	L
CO4	Н	L	Н	Μ	М	Н
CO5	Н	М	Н	Н	М	М
СО			Р	0		
	1	2	3	4	5	6
CO1	Н	Η	Н	Η	М	Н
CO2	Н	М	Н	Н	Н	Н
CO3	Н	Η	Н	М	Н	М
CO4	Н	М	Н	Н	М	Н
CO5	Н	Н	Н	Н	Н	М

(Low - L, Medium – M, High - H)

Unit I: Solar system

- 1.1 Basic ideas of the Solar system Geo-centric theory Helio-centric theory (K1, K2)
- 1.2 Kepler's laws of gravitation Newton's law of gravitation (K1, K2, K3)
- 1.3 Physical processes in the solar system (K1, K2)
- 1.4 Dynamics of the solar system physics of planetary atmospheres (K1, K2)
- 1.5 Individual planets; comets, asteroids, and other constituents of the solar system (K1, K2)
- 1.6 Extra-solar planets formation of the solar system, stars, and planets (K1, K2)

Unit II: The Sun

- 2.1 The sun A typical star Helioseismology (K1, K2)
- 2.2 Temperature distribution near the photosphere Limb darkening (K1, K2, K3)
- 2.3 Chromospheres Spicules, plages and filaments Solar granulation (K1, K2)
- 2.4 Solar corona Prominences Solar flares Radio emission from the sun (K1, K2)
- 2.5 Solar wind –Pyrheliometer (K1, K2, K3)

Unit III: The Stars

- 3.1 Stars General Distances to stars Stellar masses and radii (K1, K2)
- 3.2 Measuring of masses and stellar radii Colour index of stars (K1, K2)
- 3.3 Stellar Evolution Birth of a star Maturity Ageing of stars (K1, K2)
- 3.4 Death of a star Types of Stars Binary, multiple, variable, erupting and exploding stars (K1, K2)
- 3.5 Interstellar medium: Nebulae Novae Super Novae White Dwarfs (K1, K2)
- 3.6 Electrons in white Dwarfs Neutron stars- Pulsars Quasars Black holes (K1, K2)

Unit IV: The Galaxy

- 4.1 The Galaxy Hubble's law Schematic representation of the general structure of galaxy (K1, K2)
- 4.2 The nucleus, the galactic disk and the galactic halo Dark matter (K1, K2)
- 4.3 Milky way Hubble classification of galaxies (K1, K2)
- 4.4 Spiral galaxies Elliptical galaxies Irregular galaxies (K1, K2)
- 4.5 Dwarf galaxies Masses of galaxies (K1, K2)
- 4.6 Rotation curves of galaxy the general rotation law (K1, K2)

Unit V: Cosmic Rays and Instrumentation

- 5.1 Cosmic rays Discovery of Cosmic rays Latitude effect (K1, K2, K4)
- 5.2 Azimuth effect Altitude effect longitude effect (K1, K2)
- 5.3 Primary cosmic rays Secondary rays Detection methods (K1, K2, K3, K4)
- 5.4 Cosmic ray showers Vanallen Belts (K1, K2)
- 5.5 Astronomical Instruments: Reflecting and refracting telescopes (K2, K4)
- 5.6 Radio telescopes Hubble space telescope (HST) (K2, K4)

(16 Hours)

(13 Hours)

(14 Hours)

(15 Hours)

(14 Hours)

)

Books for study:

- 1. BaidyananthBasu- An Introduction to Astro Physics Prentice Hall of India, 2004.
- 2. K.S.Krishnaswamy- Astro Physics: A Modern Perspective Reprint, New Age International Pvt.Ltd., New Delhi, 2002.
- 3. G.K.Sasidharan- The Great Universe S.Chand& amp; Company Ltd., New Delhi 2008.
- 4. R.Murugeshan&KiruthigaSivaprasath Modern Physics S.Chand& amp; Co. Publication 2007.

Books for Reference:

- 1. V.B.Bhatia- Textbook of Astronomy and Astro Physics with Elements of Cosmology Narosa Publishing House, New Delhi, 1998.
- 2. R.R.Danial- Concepts of Space Science University Press, Reprint 2002.
- 3. K.CosmicKapoor- Space Book Lotus Press, 2005.

SEMESTER II PCPHD20 - MATHEMATICAL PHYSICS – II

Year: I	Course	Title of the	Course	Course	H/W	Credits	Marks
	Code:	Course:	Type:	Category:			
Sem: II	PCPHD20	Mathematical	Theory	Core	6	5	100
		Physics - II					

Course Objectives

1. To inculcate to the students the mathematical concepts for solving physical problems which arise in many branches of Physics.

Course Outcomes (CO)

- 1. Apply concepts of complex analysis to evaluate definite integrals.
- 2. Explain various operations of tensors and apply in many branches of science.
- 3. Apply Laplace/Fourier transforms to solve mathematical problems and use Fourier transforms as an aid for analysing experimental data.
- 4. Use various probability distribution methods to analysis any experimental event.
- 5. Apply the concept of group theory in the domain of physical sciences.

СО	PSO									
	1	2	3	4	5	6				
CO1	Н	М	Н	М	Н	Н				
CO2	Н	L	L	М	Н	Н				
CO3	Н	М	Н	Н	Н	Н				
CO4	Н	М	Н	М	Н	Н				
CO5	Н	М	Н	Μ	Н	L				

СО	РО									
	1	2	3	4	5	6				
CO1	Н	М	Н	М	М	Н				
CO2	Н	Н	Μ	Η	Н	Н				
CO3	Н	Н	Н	М	Н	Н				
CO4	Н	Н	Н	Η	Н	М				
CO5	Н	М	М	М	L	L				

(Low - L, Medium – M, High - H)

Unit I: Complex Variables

- 1.1 Analytic functions Cauchy-Riemann conditions (K2, K3, K4)
- 1.2 Single and multi-valued functions (K2, K3, K4)
- 1.3 Cauchy's integral theorem and formula (K2, K3, K4, K5)
- 1.4 Taylor's theorem and Laurent's theorem (K2, K3, K4, K5)
- 1.5 Poles and Residues Cauchy's residue theorem (K2, K3, K4, K5)
- 1.6 Application to evaluation of definite integrals of round unit circle and an infinite semi-circle (K2, K3, K4, K5)

Unit II: Tensors

- 2.1 Introduction Transition of coordinates Einstein's summation convention (K2, K3, K4)
- 2.2 Contravariant, co-variant and mixed tensors Rank of a tensor Tensors of higher ranks (K2, K3, K4)
- 2.3 Kronecker delta symbol Invariant tensors Levi civita symbol Reciprocal tensors Relative and absolute tensors (K2, K3, K4)
- 2.4 Algebraic operations of tensors Outer product, Contraction, Inner product and Quotient law (K2, K3, K4)
- 2.5 Symmetric and anti-symmetric tensors (K2, K3, K4)
- 2.6 Basic idea of Christoffel's 3-index symbols Covariant derivative of a tensor (K2, K3, K4)

Unit III: Integral Transforms

- 3.1 Laplace transforms and inverse Laplace transforms (K3, K4, K5)
- 3.2 Solution of linear differential equations with constant co-efficients- evaluation of integrals(K3, K5)
- 3.3 Fourier transforms Fourier sine and cosine transforms (K3, K4, K5)
- 3.4 Convolution theorem (K4)
- 3.5 Simple applications(K3,K5)

Unit IV: Probability Theory

- 4.1 Probability densities and probability distributions(K2, K3, K5)
- 4.2 Binomial, Poisson's and Normal distributions(K2, K3, K5)
- 4.3 Moments and generating functions (K2, K3, K5)
- 4.4 Discrete distributions (K2, K3, K5)
- 4.5 Casual and uniform distribution (K2, K3, K5)
- 4.6 Cauchy continuous distribution (K2, K3, K5)

Unit V: Group Theory

- 5.1 Definition of groups, subgroups and conjugate classes Invariant subgroup (K2, K4)
- 5.2 Homomorphism and isomorphism between groups (K2, K4)
- 5.3 Point groups Representation of a group Reducible and irreducible representations (K2, K4)

(15 Hours)

(14 Hours)

(15 Hours)

(13 Hours)

(15 Hours)

- 5.4 Schur's lemma Great orthogonality theorem (K4)
- 5.5 Character table Construction of character table for C_{3V} and C_{4V} group (K3, K6)
- 5.6 Continuous and Lie groups Symmetry group of Schrodinger equation Two dimensional Rotation group R+(2) Three dimensional Rotation group R+(3) (K4)

Books for Study:

- 1. Sathyaprakash Mathematical Physics S.Chand& Sons, Reprint 2006.
- 2. B.D.Gupta- Mathematical Physics, 3rd Edition Vikas Publishing House Pvt. Ltd., 2004.
- 3. E. Kreyszig Advanced Engineering Mathematics, 8th Edition Wiley, New York, 1999.
- 4. H.K. Dass Mathematical Physics S.Chand, Reprint 2007.

Books for reference:

- 1. M. Hamermesh Group Theory and Its Application to Physics: Problems Addision Wesley, London, 1962.
- 2. C.R. Wylie and LC. Barrett Advanced Engineering Mathematics, 6th Edition, International Edition, McGraw Hill, New York, 1995.
- 3. P.K. Chakrabarti and S.N. Kundu A Textbook of Mathematical Physics New Central Book Agency, Kolkata, 1996.
- 4. A.K. Ghatak, I.C. Goyal and S.H. Chua Mathematical Physics Macmillan India, New Delhi, 2002.
- 5. M.D. Greenberg Advanced Engineering Mathematics, 2nd International Edition Prentice Hall International, New Jersey, 1998.
- 6. P.K. Chattopadhyay Mathematical Physics Wiley Esatern, Madras, 1990.
- 7. F.A. Cotton Chemical Applications of Group Theory Wiley Eastern, New Delhi, 1987.
- 8. A.W. Joshi Elements of Group Theory for Physicists (Wiley Eastern, New Delhi, 1971.
- 9. G. Arfken and H.J. Weber Mathematical Methods for Physics, 5th Edition Harcourt (India), New Delhi, 2001.

SEMESTER II PCPHE20 - ELECTROMAGNETIC THEORY

Year: I	Course	Title of the	Course	Course	H/W	Credits	Marks
	Code:	Course:	Type:	Category:			
Sem: II	PCPHE20	Electromagnetic	Theory	Core	5	5	100
		Theory					

Course Objectives

- 1. To make the students understand the principles and theory of electrostatics, magneto statics.
- 2. To familiarize the students with electromagnetic waves and its applications.

Course Outcomes (CO)

- 1. Able to understand and apply the basic principles of electrostatics
- 2. Analyses the properties of magnetostatic field through current distribution with the application of various laws and conditions.
- 3. Able to perceive the propagation and interaction of electric and magnetic fields through free space and matter
- 4. Imbibes the wide-spread knowledge about radio communication with its mathematical applications.
- 5. Acquires the comprehensive knowledge of the various applications of antennas

СО	PSO									
	1	2	3	4	5	6				
CO1	Н	Н	М	Μ	М	L				
CO2	Н	Н	Н	Н	Н	L				
CO3	Н	Н	М	М	Н	L				
CO4	Н	Н	Н	Н	L	М				
CO5	Н	Н	М	М	Н	L				

СО	РО								
	1	2	3	4	5	6			
CO1	Н	М	Н	Н	Н	Н			
CO2	М	М	Н	М	М	М			
CO3	М	М	М	Н	Н	Н			
CO4	Н	М	Н	Μ	Н	Н			
CO5	М	Н	Н	М	М	М			

(Low - L, Medium – M, High - H)

Unit I: Electrostatics

- 1.1 Electrostatic potential Poisson's equation and Laplace's equation from Gauss' law (K1, K2)
- 1.2 Solution of Laplace's equation in spherical co-ordinates Solution to Laplace equation incylindrical coordinates - solution to Laplace equations in Cartesian coordinates (K2, K3, K5)
- 1.3 Polar molecules Langevin equation (K2, K3, K5)
- 1.4 Non-polar molecules Clausius-Mossotti relation (K2, K3, K4)
- 1.5 Polarization vector Electric field at external and internal points due to polarization -Displacement vector (K1,K2,K3)
- 1.6 Conducting sphere in a uniform field Dielectric sphere in a uniform field (K3, K4, K5)

Unit II: Magnetostatics

- 2.1 Magnetic field of steady current current density J (K1,K2)
- 2.2 Ampere's circuital law Force on current carrying conductors and charges Force betweenparallel wires & force on a point charge moving in a magnetic field (Lorentz force) (K2, K3)
- 2.3 Magnetic scalar potential Application to a circular coil (K2, K3, K4)
- 2.4 Magnetic vector potential Application to a long current carrying wire Line integral of avector potential over a closed curve (K2, K3, K4)
- 2.5 Lorentz condition Magnetic shielding (K3,K5)
- 2.6 Energy in a magnetic field (K3, K4)

Unit III: Maxwell's Equations

- 3.1 Faraday's laws of electro-magnetic induction Faraday's law in vector form (K1, K2, K4)
- 3.2 Maxwell's displacement current Maxwell's equations Derivation (K2, K3, K4)
- 3.3 Electromagnetic Potentials A and (Vector and Scalar potentials) Maxwell's equations in terms of Electromagnetic Potentials(K2, K4)
- 3.4 Non-uniqueness of Electromagnetic Potentials Gauge invariance Lorentz gauge and Coulomb gauge (K3, K4, K5)
- 3.5 Conservation laws for a systems of charges and electromagnetic fields Equation of Continuity(charge) - Momentum in EM Fields - Energy in EM fields (Poynting theorem) (K3, K4, K5)
- 3.6 Wave equation in general Plane wave solution for free space (K2,K3)

Unit IV: Application of Maxwell's Equations

- 4.1 Fields and radiation of localized sources (K1,K2)
- 4.2 Oscillating electric dipole Radiation from an oscillating electric dipole Poynting vector andradiated power (K2, K3, K4)
- 4.3 Radiation from a small current element Electric field and Radiation resistance (K3, K4)

(15 hours)

(15 hours)

(14 hours)

(14 hours)

- 4.4 Radiation from a linear antenna –Electric field intensity, Magnetic field intensity, radiatedpower (K4,K5)
- 4.5 Antenna arrays Broad side array end fire array (K4,K5)
- 4.6 Radiation pressure Electromagnetic oscillators (K4,K5)

Unit V: Wave Propagation

(14 hours)

- 5.1 Propagation of electromagnetic waves in isotropic and anisotropic dielectrics (K3, K4)
- 5.2 Propagation in conducting media Calculation of Phase Velocity Refractive Index Skin depth (K3,K4)
- 5.3 Linear and circular polarization Reflection and refraction at a plane interface (K2,K3)
- 5.4 Propagation of waves in a rectangular wave guide TE Waves TM Waves (K4,K5)
- 5.5 Cavity resonator TE Mode TM Mode (K4,K5)
- 5.6 Faraday and Kerr effects (K4)

Books for Study:

- 1. Chopra, Agarwal Electromagnetic Theory, 5th Edition K. Nath & Co, Meerut, 2014.
- 2. SathyaPraksah Electromagnetic Theory and Electrodynamics Kedarnath Ramnath &Co., 2006.
- 3. Gupta, Kumar, Singh Electrodynamics PragatiPrakashan, Meerut, 2003.

Books for Reference:

- 1. J.D. Jackson Classical Electrodynamics Willey Eastern Ltd., New Delhi, 1975.
- 2. D.J.Griffiths Introduction to Electrodynamics, 3rd Edition Prentice Hall of India, New Delhi, 2002.
- 3. J.R.Rertz, F.J. Milford and R.W. Christy Foundations of Electromagnetic Theory, 3rd Edition Narosha Publication, New Delhi, 1986.
- 4. W. Panofsky and M. Phillips Classical Electricity and Magnetism Addison Wesley, London, 1962.
- 5. J.D. Kraus and D.A. Fleisch Electromagnetic with Applications, 2nd Edition WCB McGraw Hill, New York, 1999.
- 6. B. Chakraborty Principles of Electrodynamics -Books and All Kolkata, 2002.

SEMESTER II

PEPHC20 - ELECTIVE II A: CRYSTAL GROWTH, NANO SCIENCE AND RESEARCH METHODOLOGY

Year: I	Course	Title of the	Course	Course	H/W	Credits	Marks
	Code:	Course:	Type:	Category:			
Sem: II	PEPHC20	Crystal Growth,	Theory	Major	4	4	100
		Nano Science and		Elective			
		Research					
		Methodology					

Course Objectives

- 1. To provide the students, knowledge on crystal growth techniques and nanoscience
- 2. To learn the basic concepts in research methodology for pursuing future research work.

Course Outcomes (CO)

- 1. Explain the fundamental concepts behind in the formation of crystal.
- 2. Demonstrate the various methods in crystal growth techniques and their advantages.
- 3. Understand the advanced methods of characterization instruments for crystal and nanomaterials.
- 4. To familiarize about the physical concepts and principles of nanoscience and nanotechnology.
- 5. Provide a broad view of various approaches for the synthesis and fabrication of nanostructures and their outstanding properties useful to carry out their project and research work.

СО	PSO								
	1	2	3	4	5	6			
CO1	Н	Н	Н	Μ	М	М			
CO2	Н	Н	L	Н	Н	М			
CO3	Н	Н	М	Н	Н	М			
CO4	Н	М	М	Н	L	Н			
CO5	Н	М	М	Н	Н	Н			

CO	РО								
	1	2	3	4	5	6			
CO1	Н	Н	Н	Н	М	Н			
CO2	Н	Н	Н	Н	М	Н			
CO3	Н	Н	Н	Н	М	Н			
CO4	Н	М	Н	Н	Н	Н			
CO5	М	М	М	Μ	М	Н			

(Low - L, Medium – M, High - H)

Unit I: Nucleation and Growth

- 1.1 Nucleation Different kinds of nucleation Theories of nucleation (K1, K2)
- 1.2 Classical theory of nucleation Gibbs Thomson equation for vapour (K1, K2)
- 1.3 Modified Thomson's equation for melt Gibbs Thomson equation for solution (K1, K2)
- 1.4 Concept of formation of critical nucleus Spherical and cylindrical nucleus (K1, K2, K3)
- 1.5 Crystal growth techniques Solution Growth Technique: Low temperature solution growth:Solution - Solubility and super solubility - Expression of super saturation - Miers T-Cdiagram(K1, K2, K3)
- 1.6 Gel Growth Technique: Principle Various types Structure of gel Importance of gel Experimental procedure (K1, K2, K3)

Unit II: Growth and Characterization Techniques

- 2.1 Melt technique: Bridgman technique Basic process –Vertical Bridgman technique –Crystal Pulling technique (K1, K2, K3, K4)
- 2.2 Czochralski technique Experimental arrangement Growth process (K4, K5, K6)
- 2.3 X Ray Diffraction (XRD) Powder and single crystal (K1, K2)
- 2.4 Fourier transforms Infrared analysis (FT-IR) FT –Raman Elemental analysis (K1, K2)
- 2.5 Elemental dispersive X-ray analysis (EDAX) Scanning Electron Microscopy (SEM) -Transmission electron microscopy (TEM) (K2, K4, K5, K6)
- 2.6 UV-Vis-NIR Spectrometer Etching (Chemical) Vickers Micro hardness TGA DTA PL studies (K4, K5, K6)

Unit III: Basics of Nano Technology

- 3.1 History of Nano technology concept of Nano technology and Nano machines (K1, K2)
- 3.2 Atomic structure molecules and phases Molecular and atomic sizes Surfaces and dimensional space (K1, K2, K3)
- 3.3 Top down and bottom up approach in synthesis Nano scale formation (K3, K4, K5)
- 3.4 Strong intermolecular forces Covalent and coulomb interactions (K2, K4)
- 3.5 Weak inter molecular forces Vander Waal forces Repulsive forces (K2, K4, K5)
- 3.6 Hydrogen bonding, Hydrophobic and hydrophilic interactions (K2, K5, K6)

Unit IV: Fabrication Techniques and Properties of Nano-Structure (9 Hours)

- 4.1 Vacuum Techniques: Thermal evaporation Physical Vapour deposition Ionized Cluster beam deposition Laser vaporization (ablation) laser pyrolysis (K1, K2, K3)
- 4.2 Sputter deposition DC sputtering RF sputtering Magnetron sputtering ECR plasma deposition (K1, K2)
- 4.3 Chemical vapour deposition Electric arc deposition Ion beam techniques –molecular beam epitaxy (K2, K3, K4)
- 4.4 Nanolithography techniques: Lithography using Photons (UV-VIS, Lasers and X-rays) (K2, K3, K5)
- 4.5 Lithography using particle beams Electron and Ion beam Lithography (K1, K2, K3, K4)
- 4.6 Quantum dots and Quantum wires Size dependent variation in magnetic properties Thermal and electronic transport properties (K3, K4, K5, K6)

(9 Hours)

(10 Hours)

(10 Hours)

Unit V: Research Methodology

(10 Hours)

- 5.1 Meaning of research Objectives of research Motivation of research Types, approaches and significance Methods versus methodology (K1, K2, K3)
- 5.2 Identification of the problem Literature survey Reference collection Necessity and techniques involved in defining the problem (K2, K3, K4)
- 5.3 Research design Needs and features ofgood design Different research design Basic principles of experimental designs Meaning of research report (K2, K3, K4)
- 5.4 Logical format for writing thesis and paper Essential of scientific report: abstract, introduction, review of literature, materials and methods and discussion (K3, K4, K5)
- 5.5 The use of quotation, footnotes, tables and figures Referencing Appendixes Revising the paper or thesis (K4, K5, K6)
- 5.6 Oral power point presentation Poster preparation Editing and evaluating the final product Proof reading The final typescopy(K4, K5, K6)

Books for Study:

- 1. Charles P.Poole, Frank J.Owens Introduction to Nanotechnology Wiley- Interscience, 2003.
- 2. P. Santhana Ragavan and P. Ramasamy Crystal Growth Processes and Methods KRU Publications, Kumbakonam, 2001.
- 3. C.R. Kothari and Gaurav Garg Research Methodology, Methods and Techniques New age International Publishers, III Edition.2014
- 4. Santosh Gupta Research Methodology Methods and StatisticalTechniques
- 5. Rajammal et al., -A hand Book of Methodology of Research Sri Ramakrishna Mission Vidyalaya Press, Coimbatore.

Books for Reference:

- 1. J.C. Brice Crystal Growth Processes John Wiley and Sons, New York, 1986.
- 2. C.Hawkins & M Sorgi Research Ed Norosa Publishing House, New Delhi 2000
- 3. Robert Ross Research: An introduction - Harper and RowPublications.
- 4. P. Saravanavel Research methodology - KitlabMahal, SixthEdition.
- 5. R.A. Day How to write and publish a scientific paper CambridgeUniversity press
- 6. Anderson Thesis and Assignment writing - Wiley EasternLtd.

SEMESTER II PIPHC20 - IEP: PHYSICS FOR SET/NET - PAPER – II

Year: I	Course	Title of the	Course	Course	H/W	Credits	Marks
	Code:	Course:	Type:	Category:			
Sem: II	PIPHC20	IEP: Physics for	Theory	Independent	-	2	100
		SET/NET -		Elective			
		paper –II					

Course Objectives

1. To recall and apply the knowledge about Mathematical Physics and Electromagnetic Theory for competitive Examinations.

Course Outcomes (CO)

- 1. Recall and apply the concepts and methods in mathematical physics and solve relevant problems in any competitive exams.
- 2. Understand the characteristics of special functions to solve the physical problems.
- 3. Apply concepts of complex analysis to evaluate definite integrals, tensors, probability distribution methods and group theory in the domain of physical sciences.
- 4. Recall and apply the concepts and methods in Electromagnetic theory and solve problems quantitatively in any competitive exams.
- 5. Acquires comprehensive knowledge of the various applications of wave guides, Maxwell's equations.

	PSO								
	1	2	3	4	5	6			
CO1	Н	L	Н	М	Н	М			
CO2	Н	L	Н	М	Н	Н			
CO3	М	Н	М	Н	Н	М			
CO4	Н	М	Н	М	Н	М			
CO5	М	Н	М	Н	Н	Н			

СО	РО								
	1	2	3	4	5	6			
CO1	Н	Н	Н	Н	М	Н			
CO2	Н	Н	Н	Н	М	Н			
CO3	Н	М	Μ	Н	Н	М			
CO4	Н	Н	Н	М	М	Н			
CO5	Н	Н	Н	Н	Н	М			

(Low - L, Medium – M, High - H)

Unit I: Mathematical Physics-I

- 1.1 Vector field- Gradient Divergence Curl and Laplacian in orthogonal curvilinear (K1, K2, K3, K5)
- 1.2 Spherical and cylindrical coordinate systems (K1, K2, K3)
- 1.3 Gauss-divergence and Stoke's theorem (K1, K2, K3, K5)
- 1.4 Matrices Types of Matrices Diagonal matrix (K1, K2)
- 1.5 Cayley-Hamilton theorem (K1, K2, K3)
- 1.6 Eigen values and Eigen vectors(K3, K5)

Unit II: Mathematical Physics-II Special Functions

- 2.1 Bessel, Legendre, Laguerre and Hermite polynomials (K1,K2,K3,K5)
- 2.2 Recurrence relations (K1,K3,K5)
- 2.3 Orthogonality formulae Rodrigue's formula (K3,K5)
- 2.4 Green's function (K1, K2,K5)
- 2.5 Partial differential equations (K1,K2)
- 2.6 Laplace, wave and heat equations in two and three dimensions (K3,K5)

Unit III: Mathematical Physics-III

- 3.1 Elements of complex analysis Analytic functions- Poles Residues and evaluation of integrals (K3, K5)
- 3.2 Taylor and Laurent's series (K1, K3, K5)
- 3.3 Elementary ideas of Tensors (K1, K2)
- 3.4 Laplace and Fourier Transforms Fourier series (K3, K5)
- 3.5 Elementary probability theory Binomial Poisson and Normal distributions (K3, K5)
- 3.6 Introductory group theory groups and subgroups Abelian and cyclic groups Point groups $(C_{2\nu}\&C_{3\nu})$ reducible and irreducible representations and its theorems (K1, K2)

Unit IV: Electromagnetic Theory- I

- 4.1 Electro statics Gauss law and its applications (K1, K3, K5)
- 4.2 Poisson's and Laplace equations Boundary value problems (K1, K3, K5)
- 4.3 Magnetostatics- Biot-Savart law (K1, K3, K5)
- 4.4 Ampere's theorem Lorentz force (K1, K3, K5)
- 4.5 Maxwell's equations in free space and linear isotropic media (K1, K3, K5)
- 4.6 Boundary conditions on the fields- Gauge invariance (K1, K3, K5)

Unit V: Electromagnetic Theory – II

- 5.1 Wave Propagation Electromagnetic waves in free space (K1, K3, K5)
- 5.2 Dielectrics and conductors Rectangular wave guides Cavity resonator (K1, K2)
- 5.3 Dispersion relations in plasma (K3, K5)
- 5.4 Lorentz invariance of Maxwell's equations Transmission lines and waveguides (K3, K5)

- 5.5 Scalar and vector potentials Oscillating electric dipole Pointing vector and radiated power (K3, K5)
- 5.6 Radiation from moving charges and dipoles and retarded potentials (K3, K5)

Books for study:

- 1. Sathyaprakash Mathematical Physics, S. Chand & Sons, Reprint 2018.
- 2. H.K. Dass Mathematical Physics, S.Chand, Reprint 2017.
- 3. Chopra Agarwal Electromagnetic theory K. Nath& Co. 2008
- 4. Sathyaprakash-Electromagnetic theory and Electrodynamics, K. Nath& Co.2019.

Books for reference:

- 1. E. Kreyszig- Advanced Engineering Mathematics, 8th Ed., Wiley, New York, 1999.
- 2. D.J.Griffiths Introduction to Electrodynamics, 3rdEd.Prentice Hall of India, New Delhi, 2012.

SEMESTER I & II PCPHG20 - PRACTICAL - I: GENERAL EXPERIMENTS

Year: I	Course	Title of the	Course	Course	H/W	Credits	Marks
	Code:	Course:	Type:	Category:			
Sem: I	PCPHG20	Practical I:	Practical	Core	3	4	100
& II		General					
		Experiments					

Course Objectives

- 1. To understand the concepts and principles behind in experimental physics.
- 2. To teach the students to measure the electrical, mechanical, thermal and magnetic properties of materials.
- 3. Students are trained to handle advanced sophisticated equipments and analyze the data.

Course Outcomes (CO)

- 1. Measure electrical, magnetic and thermo-dynamical properties of solids.
- 2. Measure the thickness of glass plate (mechanical property) by using cornu's method
- 3. To find the wavelength of different colors through solar, mercury and hydrogen spectrum.
- 4. Calculate the acceptance angle and light gathering capability and attenuation properties of optical fiber and find out the Viscosity, specific rotary power and polarizability of different liquids through various experiments.
- 5. Develop the skills to take an accurate reading and analyze the results of experiments and to solve problems while handling with analytical instruments.

CO		PSO								
CO	1	2	3	4	5	6				
CO1	Н	Н	L	Н	Н	Н				
CO2	Н	Н	L	М	L	Н				
CO3	Н	Н	М	М	М	Н				
CO4	Н	Н	М	Н	М	Н				
CO5	Н	Н	L	М	Н	Н				

СО		РО								
	1	2	3	4	5	6				
CO1	Н	М	Н	Н	М	Н				
CO2	М	Н	Н	Μ	М	М				
CO3	М	Н	М	Н	Н	Н				
CO4	Н	М	Н	Μ	Н	М				
CO5	М	Н	Н	Μ	М	Н				

(Low - L, Medium – M, High - H)

Course Syllabus

(Any 15 experiments)

- 1. Cornu's method Determination of Young's modulus of the material beam by elliptical fringes.
- 2. Cornu's method Determination of Young's modulus of the material beam by hyperbolic fringes.
- 3. Determination of Stefan's constant.
- 4. Band gap energy using point contact diode (Ge and Si)
- 5. Hartmann's formula Determination of wavelength of spectral lines in mercury spectrum.
- 6. Determination of Rydberg's constant Hydrogen and Neon spectrum.
- 7. Solar spectrum Hartmann's interpolation formula.
- 8. Co-efficient of linear expansion Air wedge method.
- 9. Viscosity of liquid Meyer's disc.
- 10. F.P.Etalon- using Spectrometer.
- 11. Specific charge of an electron –Magnetron method.
- 12. Energy bandgap of a Semiconductor Four Probe method (as a function of temperature).
- 13. Edser and Butler fringes Thickness of air film.
- 14. Spectrometer Charge of an electron.
- 15. Spectrometer Polarisability of liquids by finding the refractive indices at different wavelengths.
- 16. Permittivity of a liquid using RFO.
- 17. B-H loop using Anchor ring.
- 18. Determination of strain hardening co-efficient.
- 19. Determination of Audio frequencies Bridge method.
- 20. Specific heat of a liquid Ferguson's method.
- 21. Measurement of Numerical aperture (NA) of a telecommunication graded index optic fiber (for different length of fibers).
- 22. Fiber attenuation of the given optical fiber (between different lengths of fibers).
- 23. Biprism Wavelength of monochromatic source using Spectrometer.
- 24. Determination of specific rotatory power of a liquid using polarimeter.
- 25. Compressibility of a liquid using ultrasonic interferometer.
- 26. Lasers: study of laser beam parameters.

SEMESTER I & II PCPHH20 - ELECTRONICS LAB

Year: I	Course	Title of the	Course	Course	H/W	Credits	Marks
	Code:	Course:	Type:	Category:			
Sem: I	PCPHH20	Electronics Lab	Lab	Core	3	4	100
& II							

Course Objectives

- 1. Students will learn and understand the Basics of digital electronics.
- 2. To analyze logic processes and implement logical operations using combinational logic circuits.
- 3. To understand concepts of sequential circuits and to analyze sequential systems.
- 4. To analyze the different RC and LC oscillator circuits to determine the frequency of oscillation

Course Outcomes (CO)

- 1. Identify the various digital ICs and understand their operation.
- 2. Develop a digital logic and apply it to solve real life problems.
- 3. Analyze, design and implement combinational logic circuits.
- 4. Analyze, design and implement sequential logic circuits.
- 5. Design the different oscillator circuits for various frequencies.

СО	PSO								
	1	2	3	4	5	6			
C01	Н	М	М	Н	М	М			
CO2	Н	М	М	Н	Н	Н			
CO3	Н	L	Н	М	L	М			
CO4	Н	L	Н	М	М	Н			
CO5	Н	L	Н	М	L	М			

	РО								
	1	2	3	4	5	6			
CO1	Н	Н	Н	Н	М	Н			
CO2	Н	Н	Н	Н	М	Н			
CO3	Н	Н	Н	Н	М	Н			
CO4	Н	М	Н	Н	Н	Н			
CO5	М	М	М	Μ	М	Н			

(Low - L, Medium – M, High - H)

(Any 18 experiments)

List of experiments (K1 - K6):

- 1. V-I Characteristics of SCR and TRIAC.
- 2. Study of Rectifiers using C, L-C and Pi filters.
- 3. Study of Voltage Current characteristics of UJT & UJT as a Relaxation Oscillator.
- 4. FET as amplifier frequency response, input impedance and output impedance.
- 5. Study of V-I Characteristics of J-FET as a VVR (Voltage Variable Resistor).
- 6. Study of V-I Characteristics of MOSFET.
- 7. Op-amp Voltage follower (Inverting) summing, difference, average amplifier- differentiator and integrator.
- 8. Op-amp Solving simultaneous equations.
- 9. Op-amp Design of square wave generator, triangular wave generator and saw tooth wave generator.
- 10. Op-amp 4 bit D/A converter Binary Weighted Resistor method and R-2R ladder method
- 11. Op-amp Design of active Low pass, High pass, Band Pass and band rejector filter.
- 12. Op-amp Study of attenuation characteristics and design of Phase Shift Oscillator.
- 13. Op-amp Study of attenuation characteristics and design of Wien Bridge Oscillator.
- 14. IC 555 Construction of Monostable Multivibrator, Frequency Divider
- 15. IC 555 -Design of Schmitt Trigger and hysteresis.
- 16. IC 555 Construction of Astablemultivibrator and Voltage controlled Oscillator
- 17. Design of Synchronous and Asynchronous Counters using IC-7476/7473.
- 18. Construction of 4 bit Shift Register Ring Counter and Johnson Counter IC7476
- 19. Study of i) Multiplexer and using IC 74150
 - ii) De-Multiplexer using IC 74154
- 20. Arithmetic operations (Adder/Subtractor) Using IC 7483.
- 21. Modulus counter using IC7490 and display using IC7447.
- 22. Phase locked loops using IC 555.
- 23. Binary adder abdSubtractor using EX-OR and NAND gates.

SEMESTER III PCPHI20- SPECTROSCOPY

Year: II	Course	Title of the	Course	Course	H/W	Credits	Marks
	Code:	Course:	Type:	Category:			
Sem: III	PCPHI20	Spectroscopy	Theory	Core	6	4	100

Course Objectives

1. To impart the knowledge about molecular spectroscopic techniques (rotational, vibrational and magnetic resonance spectroscopy).

Course Outcomes (CO)

- 1. Describe theoretical background (classic and quantum) of spectroscopic techniques such as microwave, IR and Raman, NMR, NQR, ESR and Mossbauer spectroscopy.
- 2. Apply solutions of the Schrodinger equations for simple systems (rigid rotor and harmonic oscillator) to real systems (rotational and vibrational) for use in determining the molecular energy levels.
- 3. Analyse rotational and vibrational (microwave, IR& Raman) spectra to determine the molecular structure and physical constants.
- 4. Interpret NMR, NQR, ESR and Mossbauer spectra to obtain the information about the chemical, structural and magnetic properties of the material.
- 5. Outline the methods, instrumentation and applications (any one application) for the following spectroscopic techniques: microwave, IR, Raman, NMR, NQR, ESR and Mossbauer spectroscopy.

СО	PSO								
	1	2	3	4	5	6			
CO1	Н	L	Н	L	М	Н			
CO2	Н	L	Н	L	Η	М			
CO3	Н	М	М	Μ	Η	Н			
CO4	Н	М	Μ	Μ	Η	Н			
CO5	М	Η	L	Н	Н	Н			

СО	РО								
	1	2	3	4	5	6			
CO1	Н	М	Н	Н	Н	М			
CO2	Н	Н	Н	Μ	Μ	L			
CO3	Н	Н	Н	Н	Μ	Н			
CO4	Н	Н	Н	Н	Μ	Н			
CO5	Н	М	L	Μ	Μ	М			

(Low - L, Medium – M, High - H)

Unit I: Microwave Spectroscopy

- 1.1 Introduction Pure rotational spectra of diatomic molecule (K2, K3, K5)
- 1.2 Study of linear molecules and symmetric top molecules(K2, K3)
- 1.3 Hyperfine structure and quadruple moment of linear molecules(K2, K4)
- 1.4 Polyatomic molecules(K2)
- 1.5 Experimental techniques(K2, K3, K4)
- 1.6 Molecular structure determination–Stark effect–Applications to chemical analysis(K4, K5)

Unit II: Infrared Spectroscopy

- 2.1 Vibrational spectroscopy of diatomic molecules Harmonic Oscillator Anharmonic Oscillator(K2, K3, K4, K5)
- 2.2 Rotational vibrators (K2, K3, K4)
- 2.3 Vibrational spectroscopy of simple polyatomic molecules -Normal modes of vibration of polyatomic molecules(K2, K3, K4)
- 2.4 Inversion spectrum of ammonia (K2, K4)
- 2.5 Experimental techniques Infrared spectro- photometer Reflectance spectroscopy (K2, K3, K4)
- 2.6 Applications of infrared spectroscopy (K3, K4)

Unit III: Raman Spectroscopy

- 3.1 Classical and quantum theory of Raman Scattering (K2, K3, K4)
- 3.2 Raman effect and molecular structure Raman effect and crystal structure (K2, K3, K4)
- 3.3 Raman effect in relation to inorganic, organic and physical chemistry (K3, K4)
- 3.4 Experimental techniques (K2, K3)
- 3.5 Coherent Anti stokes Raman Spectroscopy (K2, K3, K4)
- 3.6 Applications of infrared and Raman spectroscopy in molecular structural confirmation of water and CO₂ molecules (K3, K4)

Unit IV: NMR and NQR Techniques

- 3.1 Theory of NMR Bloch equations Steady state solution of Bloch equations (K3, K4, K5)
- 3.2 Theory of chemical shifts (K2, K3, K4)
- 3.3 Experimental methods Single coil and double coil methods Pulse Method High resolution method(K2, K3)
- 3.4 Applications of NMR to quantitative measurements (K3, K4, K5)
- 3.5 Quadruple Hamiltonian of NQR Nuclear quadruple energy levels for axial and non-axial symmetry (K2, K3)
- 3.6 Experimental techniques and applications(K3, K4)

Unit V: ESR and Mossbauer Spectroscopy

5.1 Quantum mechanical treatment of ESR - Nuclear interaction and hyperfine structure - Relaxation effects (K2, K3, K4)

(14 Hours)

(13 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

- 5.2 Basic principles of spectrograph Applications of ESR method (K2, K3)
- 5.3 Mossbauer Effect Recoilless emission and absorption Mossbauer spectrum (K2, K3, K4)
- 5.4 Experimental methods Mossbauer spectrometer(K2, K3)
- 5.5 Hyperfine interactions Chemical Isomer shift Magnetic hyperfine interactions Electric quadruple interactions (K2,K3, K4, K5)
- 5.6 Simple biological applications (K3, K4, K5)

Books for Study:

- 1. Gupta Kumar Sharma Elements of Spectroscopy PragatiPrakashan, Meerut 2006.
- 2. G. Aruldas Molecular Structure and Spectroscopy Prentice Hall of India Pvt. Ltd., New Delhi, 2001.
- 3. B.K. Sharma Spectroscopy GOEL Publishing House, Meerut, 2005.
- 4. C.N. Banwell and E.M. Mc Cash Fundamentals of Molecular Spectroscopy, 4th Edition Tata McGraw Hill Publications, New Delhi, 1994.

Books for Reference:

- 1. D.N. Satyanarayana Vibrational Spectroscopy and Applications, New Age International Publications, New Delhi, 2004.
- 2. Atta Ur Rahman Nuclear Magnetic Resonance SpingerVerlag, New York, 1986.
- 3. Towne and Schawlow Microwave Spectroscopy McGraw-Hill, 1995.
- 4. Raymond Chang Basic Principles of Spectroscopy -McGraw Hill, Kogakusha, Tokyo, 1980.
- 5. D.A. Lang Raman Spectroscopy McGraw Hill International, N.Y., 1977.
- 6. D.D. Jyaji and M.D. Yadav- Spectroscopy Amol Publications, 1991.

SEMESTER III PCPHJ20 - QUANTUM MECHANICS – II

Year: II	Course	Title of the	Course	Course	H/W	Credits	Marks
	Code:	Course:	Type:	Category:			
Sem: III	PCPHJ20	Quantum	Theory	Core	6	4	100
		Mechanics - II					

Course Objectives

- 1. To impart knowledge about various theories related to Quantum Mechanics.
- 2. To understand the importance of relativistic equations.
- 3. To impart knowledge about Quantization of fields.

Course Outcomes (CO)

- 1. Understand the concept of scattering theory.
- 2. Achieve knowledge about Perturbation theory.
- 3. Attain Knowledge about relativistic Quantum Mechanics.
- 4. Assimilate the concepts of Dirac equation and its applications.
- 5. Gain knowledge about Quantization of fields.

CO	PSO								
	1	2	3	4	5	6			
CO1	Н	М	М	Μ	М	Н			
CO2	М	Н	Н	Μ	М	Н			
CO3	Н	М	Н	М	М	М			
CO4	Н	М	М	Μ	М	М			
CO5	М	Н	М	М	М	М			

СО	РО									
	1	2	3	4	5	6				
CO1	Н	Н	Н	Н	М	Н				
CO2	Н	М	М	Н	М	Н				
CO3	Н	Н	Н	М	М	Н				
CO4	Н	Н	Н	Μ	М	Н				
CO5	Н	М	М	М	М	М				

(Low - L, Medium – M, High - H)

Unit I: Time dependent Perturbation Theory

1.1 Time dependent perturbation theory - Constant perturbation (First order perturbation) (K2, K4)

- 1.2 Harmonic perturbation: Transition to a discrete state Transition to a continuum states (Fermi's Golden rule) (K3, K4, K5)
- 1.3 Absorption and emission of radiation: The electromagnetic field The Hamiltonian operator Electric dipole approximation (K2, K3, K4)
- 1.4 Transition probability Einstein's A and B coefficients (K4, K5)
- 1.5 Selection rules for dipole transition Identification of allowed transitions (K2, K4)
- 1.6 Raman scattering Rayleigh scattering (K2, K4, K5)

Unit II: Scattering Theory

(16 Hours)

- 2.1 Introduction Scattering cross section Scattering amplitude Relationship between scattering amplitude and differential scattering cross section (K1, K2, K3)
- 2.2 Partial waves Partial wave analysis: Scattering by a Central potential Ramsaur-Townsend effect (K2, K4)
- 2.3 Optical theorem Scattering by an attractive square well potential (K2, K3, K4)
- 2.4 Low energy scattering by an attractive square well potential (Breit Wigner formula)- Scattering length (K2, K4, K5)
- 2.5 Expression for Phase shifts Born approximation validity of Born approximation (K3, K4, K5)
- 2.6 Scattering by Screened coulomb potential Scattering in Laboratory and centre of mass coordinate systems - Relationship between the cross sections and kinetic energy in centre of mass and laboratory systems (K2, K4, K5)

Unit III: Relativistic Quantum Mechanics (14 Hours)

- 3.1 Klein-Gordon equation Interpretation of Klein-Gordon equation (K2, K3, K4)
- 3.2 Particle in a coulomb field (K3, K4)
- 3.3 Dirac's equation for a free particle Dirac matrices Traces (K2, K4)
- 3.4 Covariant form of Dirac equation Probability density (K4, K5)
- 3.5 Spin of the Dirac particle (electron) (K3, K4, K5)
- 3.6 Magnetic moment of an electron due to spin (K3, K4, K5)

Unit IV: Dirac Equation

(14 Hours)

- 4.1 Spin orbit interaction (K4, K5)
- 4.2 Radial equation for an electron in a central potential (K3, K4)
- 4.3 Hydrogen atom problem Lamb shift (K2, K3, K4, K5)
- 4.4 4.4Invariance of Dirac equation under Lorentz transformation Density matrix Spin density matrix (K2, K4)
- 4.5 T-Transformation for the Dirac equation in the presence of electromagnetic field (K3, K4)
- 4.6 Magnetic resonance Projection operators for energy and spin (K2, K3, K4)

(14 Hours)

Unit V: Quantization of Fields

(14 Hours)

- 5.1 Second quantization Concepts of Classical mechanics Coordinates of a field (K1, K2, K3)
- 5.2 Classical field equation in Lagrangian form Classical field equation in Hamiltonian form(K2, K3)
- 5.3 Quantization of Schrödinger equation Creation and annihilation operators (K2, K4, K5)
- 5.4 Relativistic fields Natural units Quantization of Klein-Gordon field (K2, K4, K5)
- 5.5 Quantization of Dirac field (K4, K5)
- 5.6 Quantization of electromagnetic field (K4, K5)

Books for Study:

- 1. G. Aruldhas Quantum Mechanics Second edition PHI learning private Limited, Delhi, 2009.
- 2. Gupta & Kumar Quantum Mechanics 33rd edition Jai Prakash Nath Publications- 2015.
- 3. Satyaprakash Quantum Mechanics Kedar Nath Ram Nath Publications 2019
- 4. V. Devanathan Quantum Mechanics Narosa Publishing House, New Delhi, 2005.
- 5. V.K. Thankappan Quantum Mechanics, 2nd Edition Wiley Eastern Ltd., New Delhi, 1985.
- 6. B.K.Agarwal- Quantum Mechanics and Field theory LokbharatiPrakashan publications, 2003.

Books for Reference:

- 1. P.M. Mathews and K. Venkatesan A Textbook of Quantum Mechanics Tata McGraw Hill, New Delhi, 1976.
- 2. L.I. Schiff Quantum Mechanics, 3rd Edition International Student Edition, McGraw Hill, Kogakusha, Tokyo, 1968.
- 3. E. Merzbacher Quantum Mechanics, 2nd Edition John Wiley and Sons, New York, 1970.
- 4. P.A.M. Dirac The Principles of Quantum Mechanics Oxford University Press, London, 1973.

SEMESTER III PCPHK20 – MICROPROCESSORAND MICRO-CONTROLLER

Year: II	Course	Title of the	Course	Course	H/W	Credits	Marks
	Code:	Course:	Type:	Category:			
Sem: III	PCPHK20	Microprocessor	Theory	Core	5	4	100
		and					
		Microcontroller					

Course Objectives

- 1. To make the students understand the concepts that are involved in the Microprocessor 8085 and Microcontroller 8051.
- 2. To make the students understand instruction sets, addressing modes, timings, memory and I/O interfaces.

Course Outcomes (CO)

The learners will be able to

- 1. Describe Hardware, different bus cycles and memory interface to 8085 Microprocessor.
- 2. Develop programs using 8085 Microprocessor Instruction set and addressing modes.
- 3. Describe and perform different types of peripheral interfaces to 8085 Microprocessor.
- 4. Explain hardware, instruction set and addressing modes of Microcontroller 8051 and develop programming for basic operations.
- 5. Describe and perform different types of external interfaces to 8051 Microcontroller.

СО	PSO								
	1	2	3	4	5	6			
CO1	Н	L	L	М	М	М			
CO2	Н	Н	L	М	М	М			
CO3	Н	М	L	М	М	М			
CO4	Н	М	L	М	М	М			
CO5	Н	М	L	М	Μ	Μ			

СО	PO								
	1	2	3	4	5	6			
CO1	Н	М	L	Μ	М	М			
CO2	Н	Η	Η	М	М	М			
CO3	Н	Н	L	Μ	М	М			
CO4	Н	Н	Η	М	М	М			
CO5	Н	М	L	М	М	М			

(Low - L, Medium – M, High - H)

Unit I: 8085 Microprocessor- Architecture, Instruction set and Programming (12 Hours)

- 1.1 Architecture- Functional pin diagram (K2)
- 1.2 Buses Address bus, data bus, multiplexing address/data bus (K2)
- 1.3 Instruction format-instruction fetch and execution-Machine and instruction cycle- T state-(K2)
- 1.4 Addressing modes- Instruction set data transfer group- arithmetic/logic group (K2)
- 1.5 Branch group stack and I/O control instruction (K2)
- 1.6 Programming: Picking up Largest / smallest number Arranging an array in ascending / descending order - Code conversion: Binary to BCD and BCD to Binary, Binary to ASCII, ASCII to Binary and ASCII to BCD and BCD to ASCII (K3, K6)

Unit II: 8085 Microprocessor- Memory and I/O interfacing (12 Hours)

- 2.1 ROM and RAM memory Memory interface: 2K X 8, 4K x 8 ROM and RAM interface(K2)
- 2.2 8255 Programmable interface I/O –functional Pin configuration- Internal Architecture (K2)
- 2.3 Interfacing of 8255 (K2)
- 2.4 ADC interface DAC interface wave form generator (K2, K3, K6)
- 2.5 Hex keyboard interface 4 step Stepper motor interface (K2, K3, K6)
- 2.6 Traffic regulation interface (K2, K3, K6)

Unit III: 8051 Microcontroller-Architecture, Instruction set and Programming (12 Hours)

- 3.1 Introduction to Microcontroller –8051 Functional pin diagram (K2)
- 3.2 Architecture Internal registers (K2)
- 3.3 Special function registers -Memory organizations (K2)
- 3.4 Instruction set Addressing modes (K2)
- 3.5 Programming Addition and Subtraction -Multiplication and Division (K3, K6)
- 3.6 Arranging an array in ascending/ descending order -Sorting out the maxima and minima (K3, K6)

Unit IV: 8051 Microcontroller - Memory and I/O interfacing

- 4.1 8051 Input/output Ports (K2, K3)
- 4.2 8051 Interrupts (K2, K3)
- 4.3 Interface 8051 to external memory and I/O devices using its I/O ports (K2, K3)
- 4.4 Counters and Timers Serial communication using MAX232 (K2, K3)
- 4.5 Interfacing 8051 with ADC –DAC (K2, K3, K6)
- 4.6 LED Display Hex Keyboard (K2, K3, K6)

Unit V: Sensor Based Embedded Controller & IoT Applications (12 Hours)

- 5.1 Working principle of Sensors/Transducers: Light sensor LDR, Heat sensor LM35, IR Transmitter/ Receiver module (K2)
- 5.2 Embedded system concept-Architecture & salient features of ATmega328 (K2)
- 5.3 Programming & compiling with IDE software Motor driver IC LM339 (K2, K3)

(12 Hours)

- 5.4 Blue tooth controller HC05 for wireless communication (K2, K3)
- 5.5 IoT applications for automation : Light activated Morning alarm Darkness activated Garden Lights Heat activated Fire alarm (K3, K6)
- 5.6 Intruder alarm using IR Android mobile touch key pad controlled Robot car (K3, K6)

Books for Study:

- 1. R.S. Gaonkar Microprocessor Architecture, Programming and Application with the 8085, 3rd Edition Penram International Publishing, Mumbai, 1997.
- 2. V.Vijayendran Fundamentals of Microprocessor 8085 Architecture, Programming and interfacing Viswanathan Publication, Chennai, 2002.
- 3. N. NagoorKanni- Microprocessor and Microcontroller –2nd Edition Tata McGraw Hill EducationPvt. Ltd., New Delhi, 2017.
- 4. Muhammed Ali Mazidi and Janice Gillespie Mazidi- The 8051 Microcontroller and Embedded Systems, Fourth Indian Reprint Pearson Education, 2004.
- 5. Kenneth J. Ayala The 8051 Micro Controller Architecture, Programming and Applications, 3rd Edition West Publishing Company, 1991.

Books for Reference:

- 1. B. Ram Fundamentals of Microprocessors and Microcomputers DhanpatRaiPublications, New Delhi, 2005.
- 2. R. Thiagarajan, S. Dhanasekaran and S.Dhanapal Microprocessor and its Applications, New Age International, New Delhi, 2010.
- 3. John B. Peatman Design with PIC Microcontrollers, 7th Indian Reprint Pearson Education, 2004.
- 4. Raj Kamal Introduction to Embedded Systems TMS, 2002.

SEMESTER III PEPHE20 - NUMERICAL METHODS AND C-PROGRAMMING

Year: II	Course	Title of the	Course	Course	H/W	Credits	Marks
	Code:	Course:	Type:	Category:			
Sem: III	PEPHE20	Numerical	Theory	Core	5	4	100
		Methods and		Elective			
		C-Programming					

Course Objectives

- 1. To impart the knowledge of numerical methods for solving problems arise in physics
- 2. To equip the students with the skill of C language.

Course Outcomes (CO)

- 1. Understand and apply numerical concepts to solve equations and find missing values for any physical problems
- 2. Solve ordinary differential equations using numerical techniques
- 3. Understand the basic concepts of C Language
- 4. Understand and use various operators and arrays in C Language
- 5. Develop simple programs using C language along with computational tools

СО	PSO								
	1	2	3	4	5	6			
CO1	Н	Η	Н	М	L	L			
CO2	Н	Η	Н	М	L	L			
CO3	Н	L	L	Μ	Μ	М			
CO4	Н	L	L	Н	Μ	М			
CO5	Н	М	М	Н	М	М			

СО		PO								
	1	2	3	4	5	6				
CO1	Н	Н	Н	М	L	L				
CO2	Н	Н	Η	Μ	М	М				
CO3	Н	Н	L	Μ	М	М				
CO4	Н	Н	Μ	L	L	L				
CO5	Н	Н	М	Μ	М	М				
CO5	Н	H	M	M	M	N				

(Low - L, Medium – M, High - H)

Unit I: Solution of Equations and Interpolation

- 1.1 Methods of false position (K2, K3, K4, K5)
- 1.2 Newton's method (K2, K3, K4, K5)
- 1.3 Fixed point Iteration method (K2, K3, K4, K5)
- 1.4 Interpolation Lagrangian polynomials (K2, K3, K4, K5)
- 1.5 divided differences (K2, K3, K4, K5)
- 1.6 Newton's forward and backward difference formulae (K2, K3, K4, K5)

Unit II: Numerical Differentiation, Integration and Differentiation Equations(16 Hours)

- 2.1 Derivatives Newton's forward / backward interpolation and Stirling formula (K2, K3, K4, K5)
- 2.2 Numerical integration by Trapezoidal Solutions of equations (K2, K3, K4, K5)
- 2.3 Simple iterative methods Newton method (K2, K3, K4, K5)
- 2.4 Numerical Integration Simpsons 1/3 and 3/8 rules (K2, K3, K4, K5)
- 2.5 Solution to first order differential equations: Taylor series method (K2, K3, K4, K5)
- 2.6 Euler and modified Euler methods Runge-kutta method (K2, K3, K4, K5)

Unit III: Programming in C

- 3.1 Introduction Basic structure of C Programming (K1, K2)
- 3.2 Character set Key words (K1, K2)
- 3.3 Identifiers (K1, K2)
- 3.4 Variables (K1, K2)
- 3.5 Assigning values to variables (K1, K2)
- 3.6 Symbolic constant (K1, K2)

Unit IV: Operators, Arrays and Strings

- 4.1 Operators Arithmetic, relational, logical, assignment, increment (K1, K2)
- 4.2 Decrement conditional and special type conversion in Expressions (K1, K2)
- 4.3 Arrays Multi dimensional arrays(K1, K2)
- 4.4 Initializing two dimensional arrays (K1, K2)
- 4.5 Initializing string variables (K1, K2)
- 4.6 Reading and writing Strings on the Arithmetic operations on strings (K1, K2)

Unit V: Simple Programmes

- 5.1 User defined functions their needs Multi function programme (K3, K6)
- 5.2 Return values and their types Calling functions (K3, K5, K6)
- 5.3 Categories of functions Multiplication (K3, K5, K6)
- 5.4 Diagonalization and inversion Solution and C programming (K3, K5, K6)
- 5.5 Lagrangian interpolation Simpson's rule (K3, K5, K6)
- 5.6 Euler method- Runge- Kutta method (K3, K5, K6)

(14 Hours)

(13 Hours)

(14 Hours)

(15 Hours)

Books for Study:

- 1. T. Veerarajan and T. Ramachandran, Numerical Methods with Programming in C, Second Edition, Tata McGraw Hill, 2007
- 2. E. Balagurusamy Computing Fundamentals and Programming, ANSI C, 3rd Edition Tata McGraw Hill Education, Ltd., 2014.
- 3. G. Balaji Numerical Methods, 9th Edition G. Balaji Publishers, Chennai, 2008.

Books for Reference:

- 1. S. Kalavathy, M. JoicePunitha Numerical Methods, 2nd Edition Vijay Nicole imprints Pvt. Ltd., 2010.
- 2. Kandasamy P., K. Thilagavathy and K. Gunavathy, Numerical Methods, S. Chand Co. Ltd., New Delhi, 2003.
- 3. A. Singaravelu, Numerical Methods, Meenakshi Agency, 2016.

SEMESTER III PIPHE20 - IEP: PHYSICS FOR SET/NET-PAPER III

Year: II	Course	Title of the	Course	Course	H/W	Credits	Marks
	Code:	Course:	Type:	Category:			
Sem: III	PIPHE20	IEP: Physics for	Theory	Independent	-	2	100
		SET/NET -		Elective			
		Paper III					

Course Objectives

1. To impart knowledge about Quantum Mechanics, Atomic & Molecular Physics and Spectroscopy for competitive Examination.

Course Learning Outcomes (CO)

- 1. Understand about Schrödinger equation, ladder operators and the concepts of time independent theory to solve Eigen value problems
- 2. Describe the properties of relativistic quantum mechanics and solve the problems using Fermi's Gold rule.
- 3. Understand the energy levels and structure of hydrogen atom and to solve the problems using ESR, NMR and Frank-Condon Principle.
- 4. Attain the basic concepts and theories in basic elements of atomic and molecular spectroscopy, classical/Quantum description of electronic, vibrational and rotational spectra and solve the problem related to that.
- 5. Gain the knowledge to solve the problems by using the theory of Raman, NMR and Spin resonance spectroscopy in order to face competitive exams and for perusing higher research work.

СО	PSO							
	1	2	3	4	5	6		
CO1	Н	Н	Н	М	Н	М		
CO2	Н	Н	Н	Μ	М	М		
CO3	Н	Н	Н	М	Н	L		
CO4	Н	Н	Н	М	Н	М		
CO5	Н	Н	Н	М	М	L		

СО	РО							
	1	2	3	4	5	6		
CO1	Н	М	М	Η	М	Н		
CO2	Н	Н	Н	Μ	М	М		
CO3	М	Н	М	Н	Н	Н		
CO4	Н	М	М	Μ	Н	Н		
CO5	М	М	Н	Μ	М	М		

(Low - L, Medium – M, High - H)

Course Syllabus

Unit I: Quantum Mechanics I

- 1.1 Wave- particle duality Schrodinger Equation Time dependent and Time independent(K1, K2, K3)
- 1.2 Expectation value Uncertainty principle Ladder operators (K1, K2, K3)
- 1.3 Eigen value problems particle in a box Harmonic oscillator (K2, K3, K4)
- 1.4 Spherical well Tunneling through a barrier Hydrogen atom, Coordinate and Momentum representations (K2, K3, K4)
- 1.5 1.5Approximation methods Time independent perturbation theory Hydrogen variation method (K3, K4, K5, K6)
- 1.6 WKB method. Angular momentum operators CG coefficients Pauli's spin matrices (K3, K4, K5, K6)

Unit II: Quantum Mechanics II

- 2.1 Scattering theory Scattering amplitude Cross sections (K1, K2)
- 2.2 Partial wave analysis Effective range theory Optical theorem (K1, K2, K3)
- 2.3 Time dependent perturbation theory Transition probabilities Fermi's Golden rule and selection rules for dipole radiations (K1, K2, K3, K4)
- 2.4 Klein-Gordan equation Dirac equation (K3, K4, K5)
- 2.5 Plane wave solution Negative energy states Antiparticles Properties of Gamma matrices (K3, K4, K5, K6)
- 2.6 Quantization of fields Semi classical theory of radiation Creation Destruction and Number operators (K3, K4, K5)

Unit III: Atomic and Molecular Physics –I

- 3.1 Quantum states of an electron in an atom Electron spin (K1, K2)
- 3.2 Spectrum of helium and alkali atom. –Relativistic corrections for energy levels of hydrogen atom (K1, K2, K3)
- 3.3 Hyperfine structure and isotopic shift Width of spectrum lines (K1, K2, K3, K4)
- 3.4 LS & JJ couplings Zeeman, Paschen Bach & Stark effects (K2, K3, K4)

- 3.5 Electron spin resonance Nuclear magnetic resonance (K3, K4, K5)
- 3.6 Chemical shift Frank-Condon principle (K4, K5)

Unit IV: Atomic and Molecular Physics -II

- 4.1 Born-Oppenheimer approximation (K1, K2)
- 4.2 Electronic, rotational, vibrational and Raman spectra of diatomic molecules, selection rules (K1, K2, K3)
- 4.3 Lasers: spontaneous and stimulated emission (K2, K3, K4)
- 4.4 Einstein A & B coefficients. Optical pumping (K3, K4)
- 4.5 Population Inversion Rate equation (K2, K3, K4)
- 4.6 Modes of resonators and Coherence length (K2, K3, K4, K5)

Unit V: Spectroscopy

- 5.1 Rotational spectra of diatomic Polyatomic and symmetric top molecules (K1, K2, K3)
- 5.2 IR of diatomic and simple polyatomic molecules Harmonic/anharmonic oscillator (K2, K3)
- 5.3 Normal modes of vibrations Raman scattering Raman Effect in inorganic Organic and physical chemistry (K1, K2)
- 5.4 NMR chemical shift Single coil and double coil methods (K2, K3, K4)
- 5.5 NQR Nuclear quadrupole energy levels for axial/non-axial symmetry (K2, K3, K4)
- 5.6 ESR Nuclear interaction and hyperfine structure. Mossbauer Effect Hyperfine/electric quadrupole interactions (K3, K4, K5)

Book for study:

- 1. G. Aruldhas Quantum mechanics, PHI Learning, 2008.
- 2. Gupta Kumar Sharma Quantum Mechanics Jai Prakash Nath Publications, 2012.
- 3. Devanathan- Quantum Mechanics
- 4. B.K. Sharma Spectroscopy Goel publishing House Krishna PrakashanMediaPvt., Ltd., 2017.

Book for Reference:

- 1. Mathews Venkatesan Quantum Mechanics
- 2. C.N. Banwell and E.M. Mc Cash Fundamentals of Molecular Spectroscopy, Tata McGraw Hill Publications, Reprint2017.

3. G. Aruldas- Molecular structure and Spectroscopy, Prentice Hall of IndiaPvt., Ltd., New Delhi, 2016.

SEMESTER III PIPHF20 - IEP: NUMERICAL METHODS & RESEARCH METHODOLOGY

Year: II	Course	Title of the	Course	Course	H/W	Credits	Marks
	Code:	Course:	Type:	Category:			
Sem: III	PIPHF20	IEP: Numerical	Theory	Independent	-	2	100
		Methods and		Elective			
		Research					
		Methodology					

Course Objectives

- 1. To impart knowledge of various concepts involved in numerical analysis
- 2. To prepare the students for higher studies

Course Outcomes (CO)

- 1. Understand and apply numerical concepts to solve equations and evaluate any integrals
- 2. Solve ordinary differential equations using numerical differentiation techniques
- 3. Understand the basics of research and research methodology
- 4. Define research problem in their own domain and describe various research design
- 5. Draw a good research report and impart research communication techniques

CO	PSO							
CO	1	2	3	4	5	6		
CO1	Н	М	Н	М	Н	L		
CO2	Н	М	Н	М	М	L		
CO3	Н	L	L	L	М	Н		
CO4	Н	Н	М	М	L	Н		
CO5	Н	Н	L	Μ	Н	М		

СО	РО							
	1	2	3	4	5	6		
CO1	Н	Н	Н	Μ	М	Н		
CO2	Н	Н	М	Н	М	М		
CO3	М	Н	М	Н	Н	Н		
CO4	Н	М	Н	Μ	М	М		
CO5	М	М	Н	Μ	М	М		

(Low - L, Medium – M, High - H)

Uni	t I: Solution of Equations and Numerical Integrations	(14 Hours)
1.1	Fixed point iteration method (K2, K3, K4, K5)	
1.2	Newton's Raphson method (K2, K3, K4, K5)	
1.5	Solutions of simultaneous equation (K2, K3, K4, K5)	
1.4	Numerical integration using Trapezolual(K2, K3, K4, K3) Simpson's $1/3$ rule (K2, K3, K4, K5)	
1.6	Simpson's 3/8 rule (K2, K3, K4, K5)	
Uni	t II: Numerical Differentiations	(14 Hours)
2.1	Solutions of equations (K2, K3, K4, K5)	
2.2	Numerical Differentiation (K2, K3, K4, K5)	
2.3	Numerical solution of first order differential equations (K2, K3, K4, K5)	
2.4	RungeKutta method (K2, K3, K4, K5)	
2.5	Taylor series method (K2, K3, K4, K5)	
2.6	Euler's and modified Euler's method (K2, K3, K4, K5)	
Uni	t III: Research Methodology - An Introduction	(13 Hours)
3.1	Meaning of research - Objectives of research (K1, K2)	
3.2	motivation of research (K1, K2)	
3.3	Types, approaches and significance - Methods versus methodology (K1, K2)	
3.4	Research in scientific methods - Research process (K1, K2, K3, K5)	

- 3.5 Criteria for good research Problem encountered by research in India-(K1, K2, K4)
- 3.6 Funding agencies (K1, K2)

Unit IV: Research Design

- 4.1 Identification of the problem Literature Survey (K1, K2, K6)
- 4.2 Reference Collection (K1, K6)
- 4.3 Necessity and techniques involved in defining the problem (K1, K2, K4)
- 4.4 Research design Needs and features of good design (K3, K4, K5)
- 4.5 Different research design (K3, K4, K5, K6)
- 4.6 Basic principles of experimental designs (K1, K2)

Unit V: Research Communication

- 5.1 Meaning of research report Logical format for writing thesis and paper (K1, K2)
- 5.2 Essential of scientific report: abstract, introduction (K1, K2)
- 5.3 Review of literature, materials and methods and discussion The use of quotation (K1, K2)
- 5.4 Footnotes tables and figures referencing appendixes revising the paper or thesis (K2, K6)
- 5.5 Oral power point presentation Poster preparation (K1, K2, K6)
- 5.6 Editing and evaluating and the final product proof reading the final types copy (K1, K2, K6)

(15 Hours)

)

(16 Hours)

Books for Study:

- 1. Dr. G. Balaji Numerical Methods 15th edition G.Balaji Publishers-2017
- 2. E. Balagurusamy Numeric Methods Tata Mc Graw Hill.
- 3. C.R. Kothari and Gaurav Garg Research Methodology, Methods and Techniques New age International Publishers, III Edition. 2014
- 4. Santosh Gupta Research Methodology Methods and Statistical Techniques
- 5. Rajammal et al., -A hand Book of Methodology of Research Sri Ramakrishna Mission Vidyalaya Press, Coimbatore.

Books for Reference:

- 1. C.Hawkins& M Sorgi Research Ed Norosa Publishing House, New Delhi 2000
- 2. Robert Ross Research: An introduction - Harper and Row Publications.
- 3. P. Saravanavel Research methodology - KitlabMahal, Sixth Edition.
- 4. R.A. Day How to write and publish a scientific paper Cambridge University Press.
- 5. Anderson Thesis and Assignment writing - Wiley Eastern Ltd.

SEMESTER IV PCPHM20- NUCLEAR AND PARTICLE PHYSICS

Year: II	Course	Title of the	Course	Course	H/W	Credits	Marks
	Code:	Course:	Type:	Category:			
Sem: IV	PCPHM20	Nuclear And	Theory	Core	6	4	100
		Particle Physics	-				

Course Objectives

1. To impart knowledge about nuclear- interactions, reactions, models and basic concepts in elementary particles.

Course Outcomes (CO)

- 1. Apply core concepts in physics to understand nuclear interactions, features of nuclear reactions and characteristics of radioactive decays (beta & gamma).
- 2. Describe basic nuclear structure and nuclear properties by applying the mathematical theory and models (liquid drop model, Shell model, collective model, optical model etc.)
- 3. Evaluate some basic nuclear parameters such as radius, BE, Q-value, nuclear spin, parity etc.
- 4. Classify elementary particles (based on interactions and spin) and explain the fundamental concepts in particle physics (conservation laws, parity violation, interactions etc.)
- 5. Study the substructure and symmetries in elementary particles (SU (2) &SU (3)); apply Quark model to find the missing particle.

СО		PSO								
	1	1 2 3 4 5 6								
CO1	Η	L	Н	L	М	М				
CO2	Н	L	Н	Н	М	М				
CO3	Η	L	Н	М	М	М				
CO4	Н	L	L	L	М	Н				
CO5	М	L	Н	Μ	М	Н				

CO		РО								
	1	1 2 3 4 5 6								
CO1	Н	L	Н	М	М	М				
CO2	Н	М	Η	Н	М	М				
CO3	Н	М	Η	М	М	М				
CO4	Н	М	L	L	М	L				
CO5	Н	L	Н	М	М	L				

(Low - L, Medium – M, High - H)

Unit I: Nuclear Interactions

- 1.1 Introduction Nuclear forces Two body problem (K1, K2)
- 1.2 Ground state of deuteron Magnetic moment Quadrupole moment Tensor forces (K2, K3, K4)
- 1.3 Meson theory of nuclear forces Yukawa potential (K3, K4)
- 1.4 Nucleon Nucleon scattering Low energy n-p scattering (K2, K3, K4)
- 1.5 Effective range theory Spin dependence (K3, K4)
- 1.6 Charge independence and charge symmetry of nuclear forces-Isospin formalism (K3, K4)

Unit II: Nuclear Reactions

- 2.1 Types of reactions and conservation laws (K1, K2)
- 2.2 Energetic of nuclear reactions Dynamics of nuclear reactions Q-value equation (K2, K3, K4, K5)
- 2.3 Scattering and reaction cross sections (K3, K4, K5)
- 2.4 Compound nucleus reactions -Scattering matrix Reciprocity theorem (K2, K3, K4)
- 2.5 Breit Wigner one level formula Resonance scattering (K2, K3, K4)
- 2.6 Continuum theory Optical model (K3, K4)

Unit III: Nuclear Models

- 3.1 Introduction Liquid drop model (K2, K3, K4)
- 3.2 Semi empirical mass formula of Weizsacker- Nuclear stability- Mass parabolas (K3, K4, K5)
- 3.3 Bohr-Wheeler theory of fission (K3, K4, K5)
- 3.4 Shell model Spin-orbit coupling Magic numbers (K3, K4)
- 3.5 Angular momenta and parities of nuclear ground states (K4, K5)
- 3.6 Collective model of Bohr and Mottelson-Nilsson Model Oblate and prolate deformations of Nucleus (K3, K4)

Unit IV: Nuclear Decay

- 4.1 Beta decay Fermi theory of beta decay Fermi Curie Plot (K3, K4, K5)
- 4.2 Fermi and Gamow- Tellar selection rules Allowed and forbidden decays Decay rates (K4, K5)
- 4.3 Theory of neutrino Helicity of neutrino (K2, K4)
- 4.4 Theory of electron capture Non conservation of parity (K3, K4)
- 4.5 Gamma decay Multipole transitions in nuclei (K3, K4)
- 4.6 Internal conversion Nuclear isomerism (K3, K4)

Unit V: Elementary Particle Physics

- 5.1 Types of interaction between elementary particles Hadrons and leptons (K2, K4)
- 5.2 Quantum numbers and conservation laws (K2)
- 5.3 Symmetries Elementary ideas of CP and CPT invariance (K2, K4)

(14 Hours)

(13 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

- 5.4 Classification of hadrons SU(2) and SU(3) multiplets (K3, K4, K5)
- 5.5 Quark model Gell-Mann-Okubo mass formula for octet and decupled hadrons (K3, K4, K5)
- 5.6 Charm, bottom and top quarks (K2)

Books for Study:

- 1. M.L. Pandya and R.P.S. Yadav Elements of Nuclear Physics, 7th Edition, KedarNath Ram Nath, Delhi, 1995.
- 2. D.C.Tayal- Nuclear Physics Himalaya Publishing House, 2006.
- 3. S.N. Ghoshal Atomic and Nuclear Physics, Vol. 2 S Chand & Co. Ltd., 2000.
- 4. V.Devanathan- Nuclear Physics, 2nd Edition Narosa Publication, 2011.

Books for Reference:

- 1. K. S. Krane Introductory Nuclear Physics Wiley, New York, 1987.
- 2. D. Griffiths Introduction to Elementary Particle Physics Harper & Row, New York, 1987.
- 3. R. R. Roy and B.P. Nigam Nuclear Physics New age Intl. New Delhi, 1983.
- 4. H. A. Enge Introduction to Nuclear Physics Addison-Wesley, Tokyo, 1983.
- 5. Y. R. Waghmare Introductory Nuclear Physics Oxford-IBH, New Delhi, 1981.
- 6. J. M. Longo Elementary particles, McGraw Hill, New York, 1971.
- 7. R. D. Evans Atomic Nucleus McGraw Hill, New York, 1955.
- 8. Kaplan Nuclear Physics Narosa, New Delhi, 1989.
- 9. B. L. Cohen Concepts of Nuclear Physics TMH, New Delhi, 1971.
- 10. M. K. Pal Theory of Nuclear Structure Affl. East-West, Chennai, 1982.
- 11. W. E. Burcham and M. Jobes Nuclear and Particle Physics Addison-Wesley, Tokyo, 1995.

SEMESTER IV PCPHN20 - CONDENSED MATTER PHYSICS

Year: II	Course	Title of the	Course	Course	H/W	Credits	Marks
	Code:	Course:	Type:	Category:			
Sem: IV	PCPHN20	Condensed	Theory	Core	6	4	100
		Matter Physics					

Course Objectives

- 1. To relate crystal structure to symmetry, recognize the correspondence between real and reciprocal space.
- 2. To know about the theories of metals and semiconductors
- 3. To develop an understanding of the dielectric properties and ordering of dipoles in ferroelectrics.
- 4. To get familiarized with the different parameters associated with superconductivity and the theory of superconductivity.

Course Learning Outcomes (CO)

- 1. Able to correlate the X-ray diffraction pattern for a given crystal structure.
- 2. Formulate the theory of lattice vibrations and use that to determine thermal properties of solids.
- 3. Ability to understand theory of metals and semiconductors.
- 4. Able to differentiate between ferroelectric, anti-ferroelectric materials.
- 5. Able to differentiate between type-I and type-II superconductors and their theories.

СО	PSO										
	1	1 2 3 4 5 6									
C01	Н	М	L	М	L	М					
CO2	М	Н	L	М	Н	Н					
CO3	Н	М	L	Н	L	L					
CO4	М	Н	L	М	L	L					
CO5	Н	М	L	М	Н	М					

СО	РО									
	1	1 2 3 4 5 6								
CO1	Н	Н	М	Н	Н	М				
CO2	М	Н	Н	Н	Н	Н				
CO3	Н	Н	L	Μ	М	Н				
CO4	Н	Н	LH	М	М	М				
CO5	Н	L	М	Μ	Н	М				

(Low - L, Medium – M, High - H)

Unit I: Crystal Physics

- 1.1 Types of lattices Miller indices Simple crystal structures(K1, K2)
- 1.2 Crystal diffraction Bragg's law (K1, K2)
- 1.3 Reciprocal lattice [Sc,bcc, fcc] Laue equation (K1, K2, K5)
- 1.4 Structural factor Atomic form factor (K1, K2)
- 1.5 Types of crystal binding Cohesive energy of ionic crystals (K1, K2)
- 1.6 Madelung constant types of crystal bonding (general ideas) (K1, K2)

Unit II: Lattice Dynamics

- 2.1 Monoatomic lattices lattices with two atoms per primitive cell (K1, K2)
- 2.2 First Brillouin zone group and phase velocities (K1, K2)
- 2.3 Quantization of lattice vibrations Phonon momentum (K1, K2, K3)
- 2.4 Inelastic scattering by phonons Debye's theory of lattice heat capacity (K1, K2)
- 2.5 Einstein's model and Debye's model of specific heat (K1, K2, K5)
- 2.6 Thermal expansion Thermal conductivity Umklapp processes (K1, K2)

Unit III: Theory of Metals and Semiconductors

- 3.1 Free electrons gas in three dimensions Electronics heat capacity- Wiedmann Franz law (K1, K2, K3)
- 3.2 Hall effect Bloch theorem Kronig-Penny model(K1, K2, K5)
- 3.3 Band theory of metals and semiconductors (K1, K2)
- 3.4 Semiconductors Density of States Intrinsic and Extrinsic carrier concentration (K1, K2, K3)
- 3.5 Mobility Impurity conductivity (K1, K2)
- 3.6 Fermi surfaces and construction De Haas Van Alphen effect (K2, K4, K5)

Unit IV: Magnetism

- 4.1 Elementary ideas of dia, Para and Ferro magnetism quantum theory of paramagetism (K1, K2, K3)
- 4.2 Rare earth ion Hund's rule Quenching of orbital angular momentum Adiabatic demagnetization Quantum theory of ferromagnetism (K1, K2)
- 4.3 Curie point Exchange integral Heisenberg's interpretation of Weiss field (K1, K2, K3)
- 4.4 Ferromagnetism domains Bloch Wall Spin waves quantization Magnos (K1, K2)
- 4.5 Thermal excitation of magnons Curie temperature and susceptibility of ferrimagnetisms (K1, K2, K3)
- 4.6 Theory anti ferromagnetism Neel temperature (K1, K2)

Unit V: Super Conductivity

- 5.1 Experimental facts occurrence Effect of magnetic fields Meissner effect (K1, K2)
- 5.2 Entropy and heat capacity Energy gap Microwave and infrared properties (K1, K2, K5)

(13 Hours)

(15 Hours)

(16 Hours)

(14 Hours)

(14 Hours)

- 5.3 Type I and type II Super conductors Theoretical explanation (K1, K2, K3)
- 5.4 Thermodynamics of Super conducting transition London equation Coherence length (K1, K2)
- 5.5 Theory Single particle tunneling- Josephson tunneling (K1, K2)
- 5.6 DC and AC Josephson's effect High temperature super conductors SQUIDS (K1, K2, K4)

Books for Study:

- 1. S.O Pillai Solid State Physics, 7th Edition New Age International, Delhi, 2015.
- 2. Guptha Kumar Solid State Physics, 9th Edition K.Nath& Co. Education, 2006.
- 3. K.Ilangovan Solid State Physics MJP Publications, Chennai, 2013.

Books for Reference:

- 1. A.J. Dekkar Solid State Physics Macmillan India, New Delhi, 2007.
- 2. H.M. Rosenberg The Solid State Physics, 3rd Edition Oxford University, Oxford. 1993.
- 3. S.L. Altman Band Theory of Metals: The Elements Pergamon Press Ltd., Oxford, 1970.
- 4. J.M. Ziman Principles of the Theory of Solid Cambridge University Press, London, 1971.
- 5. C. Kittel Introduction to Solid State Physics, 7th Edition New York, 1996.
- 6. M.Ali Omar Elementary Solid State Physics: Principles, Applications Addison- Wesley, London, 1974.
- 7. H.P. Myers Introductory Solid State Physics, 2nd Edition V K Taylor Francis Ltd., 1998.

SEMESTER IV PIPHG20 - IEP: PHYSICS FOR SET/NET - PAPER IV

Year: II	Course	Title of the	Course	Course	H/W	Credits	Marks
	Code:	Course:	Type:	Category:			
Sem: IV	PIPHG20	IEP: Physics for	Theory	Independent	-	2	100
		SET/NET -		Elective			
		Paper IV					

Course Objectives

1. To impart knowledge about Nuclear & Particle Physics, Numerical Methods and Condensed matter Physics for competitive Examinations.

Course Outcomes (CO)

- 1. Understand the basic properties of nucleus and nuclear models.
- 2. Gain the knowledge about the elementary particles and quantum numbers.
- 3. Impart knowledge of finding solutions to any differential equations and Interpolation by using Newton's method, Simpson's and Trapezoidal rules.
- 4. Attain the basic concepts and theories in crystals and magnetism and develop the skills to solve the problems in the respective filed for performing higher studies and research.
- 5. Understand the basic concepts in superconductors.

СО	PSO								
	1	2	3	4	5	6			
C01	Н	Η	Н	М	М	L			
CO2	Н	Н	Н	Μ	М	М			
CO3	Н	Η	Н	Н	L	L			
CO4	Н	Н	М	М	М	Н			
CO5	Н	Η	М	Н	L	Н			

СО	РО							
	1	2	3	4	5	6		
CO1	Н	М	Μ	М	М	L		
CO2	Н	М	Μ	М	М	L		
CO3	Н	Н	Н	Н	L	L		
CO4	Н	Н	Η	Н	М	Μ		
CO5	Η	М	М	Н	L	М		

(Low - L, Medium – M, High - H)

Unit I: Nuclear and Particle Physics – I

- 1.1 Basic nuclear properties size, shape and charge distribution (K1, K2,)
- 1.2 Spin and parity Binding energy Ground state of deuteron (K1, K2, K3)
- 1.3 Nuclear reactions Types of reactions Conservation laws (K1, K2, K3, K4)
- 1.4 Q-value equation Nuclear models Liquid drop (K2, K3, K4)
- 1.5 Semi empirical mass formula Shell model (K3, K4,)
- 1.6 Magic numbers Angular momentum and parity Collective model (K3, K4, K6)

Unit II: Nuclear and Particle Physics –II

- 2.1 Nuclear decay alpha beta decays (K1, K2)
- 2.2 Gamma decays Selection rules (K1, K2)
- 2.3 Elementary particles Symmetries (K2, K3)
- 2.4 Conservation laws CPT invariance Quark model (K2, K3, K4)
- 2.5 Baryons and mesons Fission and Fusion (K2, K3, K4)
- 2.6 Nuclear reactions Elementary particles and their quantum numbers (K4, K5, K6)

Unit III: Numerical Methods

- 3.1 Derivatives Newton's forward / backward interpolation and (K1, K2, K3)
- 3.2 Stirling formula, Numerical integration by Trapezoidal Solutions of equations (K2, K3, K4)
- 3.3 Numerical methods Regular falsi(K3, K4, K5)
- 3.4 Newton's method Lagrangian Interpolation (K3, K4, K5)
- 3.5 Newton's divided difference method Trapezoidal Simpson's rule (K3, K4, K5)
- 3.6 Solution of differential equations by Runge-Kutta method (K4, K5, K6)

Unit IV: Condensed Matter Physics

- 4.1 Bravais lattices Reciprocal lattices and Brillouin zones ((K1, K3, K4, K5)
- 4.2 Crystal diffraction Bragg's law Crystal diffraction techniques (K3, K4, K5)
- 4.3 Bonding of solids Lattice specific heat Phonons (K4, K5)
- 4.4 Einstein's and Debye's theory of specific heat Free electron gas Hall effect (K1, K2, K3)
- 4.5 Bloch theorem Kronig Penny Model Semiconductors (K1, K2, K3)
- 4.6 Elementary ideas of dia, para and ferro magnetism (K1, K2, K3)

Unit V: Superconductors

- 5.1 Superconductors Properties of superconductor Experimental facts occurrence Effect of magnetic fields Meissner effect Entropy and heat capacity (K1, K2)
- 5.2 Energy gap Type I and II Superconductors Josephson Effect (K1, K2, K3)
- 5.3 London equation Theoretical explanation (K1, K2, K4)
- 5.4 Thermodynamics of Super conducting transition London equation BCS theory (K2, K3, K4)
- 5.5 Coherence length Theory Single particle tunneling(K3, K4, K5)
- 5.6 High temperature superconductors and applications (K4, K5)

Books for Study:

- 1. M.L. Pandya and R.P.S. Yadav Elements of Nuclear Physics, KedarNathRamNath, Delhi,2005.
- 2. D. C. Dayal Nuclear Physics University of Chicago Press Chicago.; Revised Edition, 6th Printing edition(1956)
- 3. D. Griffiths Introduction to Elementary Particle Physics, Harper & Row, New York, 1987
- 4. S.O. Pillai Solid State Physics, New Age International Publishers, New Delhi, 2017.
- 5. Gupta Kumar Sharma Solid statePhysics
- 6. C. Kittel Introduction to Solid State Physics, Wiley & Sons Ltd., New York.2012.
- 7. Dr.SurekhaTomar Competitive Exams for CSIR UGC NET/JRF/SET Upkar's publications.
- 8. M.K. Venkataraman. Introduction to NumericalMethods

Book for reference:

- 1. K.S. Krane Introductory Nuclear Physics, Wiley, New York, 1987.
- 2. J.K. Bhattacharjee Statistical Mechanics an Introductory text AlliedPublishers Ltd., New Delhi, 1996.
- 3. Charles Kittel, Elementary Statistical Physics Dover Publications, Inc, NewYork, 2004.
- 4. M. Glazer and J. Wark Statistical Mechanics Oxford UniversityPress.
- 5. C. Kalidas, M.V.Sangaranarayanan Non Equilibrium Thermodynamics Macmllan India, New Delhi.

SEMESTER IV PIPHH20- IEP: ADVANCED NUCLEAR PHYSICS AND SPECTROSCOPY

Year: II	Course	Title of the	Course	Course	H/W	Credits	Marks
	Code:	Course:	Type:	Category:			
Sem: IV	PIPHH20	IEP:Advanced	Theory	Independent	-	2	100
		Nuclear		Elective			

Course Objectives

- 1. To impart knowledge about nuclear detectors and particle accelerators, basic aspects of astrophysics and applications of nuclear physics.
- 2. Beside this, students will be familiarized to UV spectroscopy, atomic absorption and emission spectroscopic techniques.

Course Outcomes (CO)

- 1. Explain the basic concepts of nuclear detectors and particle accelerators.
- 2. Explain the basic aspects of astrophysics.
- 3. Explain the principles, working and application of nuclear spectroscopic techniques (RBS, NAA, PIXE) and other applications of nuclear physics.
- 4. Explain the basic principles, instrumentation and applications of UV spectroscopy.
- 5. Explain the basic principles, instrumentation and applications of atomic absorption and emission spectroscopy.

CO	PSO							
	1	2	3	4	5	6		
CO1	М	Н	L	Н	М	L		
CO2	М	L	L	L	М	М		
CO3	М	Н	L	Н	Н	М		
CO4	М	М	L	Н	Н	Н		
CO5	М	М	L	Н	Н	Μ		

СО	РО							
	1	2	3	4	5	6		
CO1	Η	М	L	Н	М	L		
CO2	М	L	L	L	М	М		
CO3	Н	Н	М	Н	М	М		
CO4	Н	Η	М	Н	Н	М		
CO5	Н	М	L	М	М	L		

(Low - L, Medium – M, High - H)

Unit I: Nuclear Detectors and Particle Accelerators

- 1.1 Introduction Interaction of radiation with matter (K1, K2)
- 1.2 Ge and Si solid state detectors Calorimeters and their use for measuring jet energies (K2, K3)
- 1.3 Scintillation and Cerenkov counters (K2, K3)
- 1.4 Qualitative ideas, Hybrid detectors (K2, K3)
- 1.5 Particle accelerators Pelletron-Synchrotron Synchrocyclotron (K2, K3)
- 1.6 Colliding beam accelerators Large Hadron Collider (K2, K3)

Unit II: Nuclear Astrophysics

- 2.1 Cosmic rays: Origin of cosmic rays (K2, K3)
- 2.2 Nature of primary cosmic rays and its energy distribution (K2, K3)
- 2.3 Geomagnetic and Latitude effect East-west asymmetry Origin of secondary rays (K2, K3)
- 2.4 Collision with electrons Thermonuclear fusion (K2, K3)
- 2.5 Stellar nucleo- synthesis Energy production in stars (K2, K3)
- 2.6 PP chain CNO cycle. (K2, K3)

Unit III: Applications of Nuclear Physics

- 3.1 Rutherford Backscattering Spectroscopy as a tool for depth profiling (K2, K3, K4)
- 3.2 Nuclear Fission Reactors (K2, K3)
- 3.3 Neutron Activation Analysis (K2, K3, K4)
- 3.4 Proton Induced X-ray Emission for trace element analysis (K2, K3, K4)
- 3.5 Radioactive dating Mossbauer Effect (K2, K3)
- 3.6 Applications in medicine (K3, K4)

Unit IV: UV Spectroscopy

- 4.1 Energy levels Molecular orbital's theory and UV spectra (K2, K3)
- 4.2 Franck Condon Principle Transition Probability Measurement of spectrum (K2, K3, K4)
- 4.3 Types of transition in Organic molecules Types of absorption bands (K2, K3)
- 4.4 Transition in metal complexes Selection rules (K2, K3, K4)
- 4.5 Electronic spectra in poly atomic molecules Chromospheres concept (K2, K3)
- 4.6 Application of UV Spectroscopy (K3, K4)

Unit V: Atomic Absorption and Emission Spectroscopy

- 5.1 Principle of AAS Measurement of atomic absorption (K2, K3)
- 5.2 Instrumentation Single beam Spectrophotometer (K2, K3)
- 5.3 Applications of AAS (K2, K3, K4)
- 5.4 Atomic Emission Spectroscopy Principle of AES Advantages (K2, K3)
- 5.5 Instrumentation Laser beam Applications of AES (K2, K3, K4)
- 5.6 Difference between AAS and AES (K3, K4)

Books for Study:

- 1. G. Aruldhas Molecular Structure and Spectroscopy Prentice Hall of India Pvt. Ltd., New Delhi, 2001.
- 2. H.Kaur Spectroscopy, 5th Edition A PragatiPrakashan, 2009
- 3. P. S. Sindhu Molecular Spectroscopy Tata McGraw Hill, New Delhi, 1990.
- 4. Krane K.S. Nuclear Physics, Wiley India Pvt. Ltd., (2008).
- 5. Lilley J.S., Nuclear physics principles and applications John Wiley & sons Ltd., (2007).

Books for Reference:

- 1. Raymond Chang Basic Principles of Spectroscopy McGraw Hill Kogakusha, 1980.
- 2. G. W. King Spectroscopy and Molecular Structure HoitRinchart and WinstenInc, London, 1964
- 3. Concepts of Modern Physics: A.Beiser.
- 4. Subatomic Physics, Frauenfelder and Henley. (Prentice-Hall)
- 5. De Soete, D. R. Gijbelsa n d J. Hoste, Neutron Activation Analysis. John Wiley and Sons: New York, NY. (1972).
- 6. L. C. Feldmen and j. W. Mayer, fundamentals of surface and thin film s analysis, North Holland, Elsevier, 1986.
- 7. W. R. Leo, Techniques for Nuclear and Particle Physics Experiments, Narosa Publishing House, Indi, 1995.
- 8. G. F.Knoll, Radiation Detection and Measurement, John, Wiley & Sons, Inc, 2000.

SEMESTER IV PCPHO20- PRACTICAL III: ADVANCED GENERAL EXPERIMENTS

Year: II	Course	Title of the	Course	Course	H/W	Credits	Marks
	Code:	Course:	Type:	Category:			
Sem: IV	PCPHO20	Practical III:	Practical	Core	4	4	100
		Advanced					
		General					
		Experiments					

Course Objectives

1. To provide the student hands-on experiences to conduct advanced general experiments in laboratory in lieu with the theory taught in the class.

Course Outcomes (CO)

- 1. Interpret and appreciate the advanced concepts in physics.
- 2. Use scientific equipment for analysis and data acquisition.
- 3. Analyse the properties (electric, magnetic, nuclear and dielectric) of solids/liquids.
- 4. Apply acquired knowledge to the analysis of experimental data.
- 5. Get exposure to work environment at research level and motivation for a lifelong learning.

CLO	PSO								
	1	2	3	4	5	6			
CLO1	Н	L	Н	L	Н	Н			
CLO2	М	Н	L	Μ	Н	Н			
CLO3	Н	Н	Н	Μ	Н	Н			
CLO4	Н	М	Н	L	Н	Н			
CLO5	L	М	L	L	Н	Н			

CLO	PO								
	1	2	3	4	5	6			
CLO1	Н	Н	Н	Н	Н	Н			
CLO2	Н	Н	М	Μ	Н	Н			
CLO3	Н	Н	Н	Μ	Н	Н			
CLO4	Н	М	Н	Μ	Н	Н			
CLO5	Н	Н	Н	Η	Н	Н			

(Low - L, Medium – M, High - H)

(Any 15 experiments) (K1 - K6)

- 1. G.M. Counter characteristics, Inverse square law.
- 2. G.M. Counter Absorption co-efficient.
- 3. Determination of Carrier Concentration Hall Effect.
- 4. Determination of Volume Susceptibility of a liquid by Quincke's method.
- 5. Determination of Mass Susceptibility of a liquid by Guoy's method.
- 6. Michelson Interferometer -Wavelength and separation of wavelengths.
- 7. Michelson Interferometer Thickness of mica sheet.
- 8. F.P. Etalon using Michelson set up.
- 9. Determination of Wave length of Laser Beam.
- 10. Ultrasonic Interferometer Velocity and Compressibility of a liquid.
- 11. Ultrasonic Diffraction Velocity and Compressibility of a liquid.
- 12. Determination of Planck's constant.
- 13. B-H curve using CRO.
- 14. Salt Analysis using Spectrograph CDS
- 15. Dielectric constant of liquids and solids by capacitance method.
- 16. Determination of coefficient of coupling by AC bridge method.
- 17. Impedance measurement using LCR bridge.
- 18. Four probe method Determination of conductivity of thin films.
- 19. Determination of dielectric loss using CRO.
- 20. Laser diode characteristics.

SEMESTER IV PCPHP20 - PRACTICAL- IV MICROPROCESSOR, MICROCONTROLLER AND C PROGRAMMING

Year: II	Course	Title of the Course:	Course	Course	H/W	Credits	Marks
	Code:	Microprocessor,	Type:	Category:			
Sem: IV	PCPHP20	Microcontroller	Practical	Core	4	4	100
		&					
		C-Programming					

Course Objectives

- 1. To provide the students hands on training of programming knowledge on Microprocessor, Microcontroller and C language.
- 2. To make the students develop the assembly language programs for arithmetic and peripheral interface operations.

CourseOutcomes (CO)

- 1. Develop assembly language programs on arithmetic and sorting operations using 8085 and 8051
- 2. Develop and perform peripheral interface programs with 8085 Microprocessor
- 3. Perform all code conversions and analog signals into digital and vice versa. Also can generate wave forms.
- 4. Write C program for any basic operations
- 5. Solve any physical problems using C language along with numerical techniques

CO	PSO							
	1	2	3	4	5	6		
CO1	Н	М	Η	М	Н	М		
CO2	Н	М	L	Н	Н	М		
CO3	Н	М	L	L	М	М		
CO4	Н	L	М	М	М	М		
CO5	Н	Μ	М	Н	Н	М		

CO	РО							
	1	2	3	4	5	6		
CO1	Н	Н	Н	М	Μ	М		
CO2	Н	Н	М	Н	Μ	М		
CO3	Н	М	L	L	М	М		
CO4	Н	Н	М	М	М	М		
CO5	Н	Н	М	Н	Μ	М		

(Low - L, Medium – M, High - H)

(Any 20 experiments)

Microprocessor 8085 Programmes (K1 - K6)

- 1. Addition & subtraction and Multiplication & Division of 8-bit hexadecimal numbers.
- 2. Square and Square Root of 8-bit hexadecimal numbers.
- 3. Picking up Largest and Smallest number in an array of 8-bit hexadecimal numbers.
- 4. Arranging an array of 8-bit hexadecimal numbers in Ascending and Descending orders.
- 5. Code Conversion of Binary to BCD and BCD to Binary, Binary to ASCII and ASCII to Binary and BCD to ASCII and ASCII to BCD.
- 6. 8-Bit and 16-Bit BCD Addition.
- 7. Addition of Array of 8-Bit Numbers.
- 8. Digital Clock Program for 12 / 24 Hours.
- 9. Analog to Digital Conversion and ADC Interface.
- 10. Digital to Analog Conversion Wave form Generator DAC Interface.
- 11. Keyboard Display Interface.
- 12. Stepper Motor Interface.
- 13. Traffic regulation interface
- 14. Dynamic message display
- 15. 8255 I/O Display interface

Microprocessor 8086 Programmes

- 1. 16-Bit Addition & subtraction and Multiplication & division.
- 2. 16-Bit Ascending and descending order.
- 3. Computation of LCM.
- 4. Factorial of a number.

Microcontroller 8051 Experiments

- 1. 8-Bit Addition and Subtraction
- 2. 8-Bit Multiplication and Division.
- 3. Sorting in ascending and descending order.
- 4. Sorting out the maxima and minima.

Computation Methods - C Programming

- 1. Lagrange interpolation with algorithm, flow chart with program and its output
- 2. Numerical integration by Simpson's rule with algorithm and flowchart with program and its output.
- 3. Numerical solution of ordinary first order differential equation -Euler's method with algorithm, flowchart and its output.
- 4. Numerical solution of ordinary first order differential equations by the Runge- kutta method, with algorithm, flow chart with program and its output
- 5. Curve fitting Least square fitting with algorithm, flowchart and its output.